|
|
|
""" Deep Layer Aggregation and DLA w/ Res2Net
|
|
|
|
DLA original adapted from Official Pytorch impl at:
|
|
|
|
DLA Paper: `Deep Layer Aggregation` - https://arxiv.org/abs/1707.06484
|
|
|
|
|
|
|
|
Res2Net additions from: https://github.com/gasvn/Res2Net/
|
|
|
|
Res2Net Paper: `Res2Net: A New Multi-scale Backbone Architecture` - https://arxiv.org/abs/1904.01169
|
|
|
|
"""
|
|
|
|
import math
|
|
|
|
from typing import List, Optional
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from .helpers import build_model_with_cfg
|
|
|
|
from .layers import create_classifier
|
|
|
|
from .registry import register_model
|
|
|
|
|
|
|
|
__all__ = ['DLA']
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url,
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'first_conv': 'base_layer.0', 'classifier': 'fc',
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
'dla34': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla34-2b83ff04.pth'),
|
|
|
|
'dla46_c': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla46_c-9b68d685.pth'),
|
|
|
|
'dla46x_c': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla46x_c-6bc5b5c8.pth'),
|
|
|
|
'dla60x_c': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla60x_c-a38e054a.pth'),
|
|
|
|
'dla60': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla60-9e91bd4d.pth'),
|
|
|
|
'dla60x': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla60x-6818f6bb.pth'),
|
|
|
|
'dla102': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla102-21f57b54.pth'),
|
|
|
|
'dla102x': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla102x-7ec0aa2a.pth'),
|
|
|
|
'dla102x2': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla102x2-ac4239c4.pth'),
|
|
|
|
'dla169': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla169-7c767967.pth'),
|
|
|
|
'dla60_res2net': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net_dla60_4s-d88db7f9.pth'),
|
|
|
|
'dla60_res2next': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next_dla60_4s-d327927b.pth'),
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class DlaBasic(nn.Module):
|
|
|
|
"""DLA Basic"""
|
|
|
|
|
|
|
|
def __init__(self, inplanes, planes, stride=1, dilation=1, **_):
|
|
|
|
super(DlaBasic, self).__init__()
|
|
|
|
self.conv1 = nn.Conv2d(
|
|
|
|
inplanes, planes, kernel_size=3, stride=stride, padding=dilation, bias=False, dilation=dilation)
|
|
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
self.conv2 = nn.Conv2d(
|
|
|
|
planes, planes, kernel_size=3, stride=1, padding=dilation, bias=False, dilation=dilation)
|
|
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
|
|
self.stride = stride
|
|
|
|
|
|
|
|
def forward(self, x, shortcut=None, children: Optional[List[torch.Tensor]] = None):
|
|
|
|
if shortcut is None:
|
|
|
|
shortcut = x
|
|
|
|
|
|
|
|
out = self.conv1(x)
|
|
|
|
out = self.bn1(out)
|
|
|
|
out = self.relu(out)
|
|
|
|
|
|
|
|
out = self.conv2(out)
|
|
|
|
out = self.bn2(out)
|
|
|
|
|
|
|
|
out += shortcut
|
|
|
|
out = self.relu(out)
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class DlaBottleneck(nn.Module):
|
|
|
|
"""DLA/DLA-X Bottleneck"""
|
|
|
|
expansion = 2
|
|
|
|
|
|
|
|
def __init__(self, inplanes, outplanes, stride=1, dilation=1, cardinality=1, base_width=64):
|
|
|
|
super(DlaBottleneck, self).__init__()
|
|
|
|
self.stride = stride
|
|
|
|
mid_planes = int(math.floor(outplanes * (base_width / 64)) * cardinality)
|
|
|
|
mid_planes = mid_planes // self.expansion
|
|
|
|
|
|
|
|
self.conv1 = nn.Conv2d(inplanes, mid_planes, kernel_size=1, bias=False)
|
|
|
|
self.bn1 = nn.BatchNorm2d(mid_planes)
|
|
|
|
self.conv2 = nn.Conv2d(
|
|
|
|
mid_planes, mid_planes, kernel_size=3, stride=stride, padding=dilation,
|
|
|
|
bias=False, dilation=dilation, groups=cardinality)
|
|
|
|
self.bn2 = nn.BatchNorm2d(mid_planes)
|
|
|
|
self.conv3 = nn.Conv2d(mid_planes, outplanes, kernel_size=1, bias=False)
|
|
|
|
self.bn3 = nn.BatchNorm2d(outplanes)
|
|
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
|
|
|
|
def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None):
|
|
|
|
if shortcut is None:
|
|
|
|
shortcut = x
|
|
|
|
|
|
|
|
out = self.conv1(x)
|
|
|
|
out = self.bn1(out)
|
|
|
|
out = self.relu(out)
|
|
|
|
|
|
|
|
out = self.conv2(out)
|
|
|
|
out = self.bn2(out)
|
|
|
|
out = self.relu(out)
|
|
|
|
|
|
|
|
out = self.conv3(out)
|
|
|
|
out = self.bn3(out)
|
|
|
|
|
|
|
|
out += shortcut
|
|
|
|
out = self.relu(out)
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class DlaBottle2neck(nn.Module):
|
|
|
|
""" Res2Net/Res2NeXT DLA Bottleneck
|
|
|
|
Adapted from https://github.com/gasvn/Res2Net/blob/master/dla.py
|
|
|
|
"""
|
|
|
|
expansion = 2
|
|
|
|
|
|
|
|
def __init__(self, inplanes, outplanes, stride=1, dilation=1, scale=4, cardinality=8, base_width=4):
|
|
|
|
super(DlaBottle2neck, self).__init__()
|
|
|
|
self.is_first = stride > 1
|
|
|
|
self.scale = scale
|
|
|
|
mid_planes = int(math.floor(outplanes * (base_width / 64)) * cardinality)
|
|
|
|
mid_planes = mid_planes // self.expansion
|
|
|
|
self.width = mid_planes
|
|
|
|
|
|
|
|
self.conv1 = nn.Conv2d(inplanes, mid_planes * scale, kernel_size=1, bias=False)
|
|
|
|
self.bn1 = nn.BatchNorm2d(mid_planes * scale)
|
|
|
|
|
|
|
|
num_scale_convs = max(1, scale - 1)
|
|
|
|
convs = []
|
|
|
|
bns = []
|
|
|
|
for _ in range(num_scale_convs):
|
|
|
|
convs.append(nn.Conv2d(
|
|
|
|
mid_planes, mid_planes, kernel_size=3, stride=stride,
|
|
|
|
padding=dilation, dilation=dilation, groups=cardinality, bias=False))
|
|
|
|
bns.append(nn.BatchNorm2d(mid_planes))
|
|
|
|
self.convs = nn.ModuleList(convs)
|
|
|
|
self.bns = nn.ModuleList(bns)
|
|
|
|
self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=1) if self.is_first else None
|
|
|
|
|
|
|
|
self.conv3 = nn.Conv2d(mid_planes * scale, outplanes, kernel_size=1, bias=False)
|
|
|
|
self.bn3 = nn.BatchNorm2d(outplanes)
|
|
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
|
|
|
|
def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None):
|
|
|
|
if shortcut is None:
|
|
|
|
shortcut = x
|
|
|
|
|
|
|
|
out = self.conv1(x)
|
|
|
|
out = self.bn1(out)
|
|
|
|
out = self.relu(out)
|
|
|
|
|
|
|
|
spx = torch.split(out, self.width, 1)
|
|
|
|
spo = []
|
|
|
|
sp = spx[0] # redundant, for torchscript
|
|
|
|
for i, (conv, bn) in enumerate(zip(self.convs, self.bns)):
|
|
|
|
if i == 0 or self.is_first:
|
|
|
|
sp = spx[i]
|
|
|
|
else:
|
|
|
|
sp = sp + spx[i]
|
|
|
|
sp = conv(sp)
|
|
|
|
sp = bn(sp)
|
|
|
|
sp = self.relu(sp)
|
|
|
|
spo.append(sp)
|
|
|
|
if self.scale > 1:
|
|
|
|
if self.pool is not None: # self.is_first == True, None check for torchscript
|
|
|
|
spo.append(self.pool(spx[-1]))
|
|
|
|
else:
|
|
|
|
spo.append(spx[-1])
|
|
|
|
out = torch.cat(spo, 1)
|
|
|
|
|
|
|
|
out = self.conv3(out)
|
|
|
|
out = self.bn3(out)
|
|
|
|
|
|
|
|
out += shortcut
|
|
|
|
out = self.relu(out)
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class DlaRoot(nn.Module):
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, shortcut):
|
|
|
|
super(DlaRoot, self).__init__()
|
|
|
|
self.conv = nn.Conv2d(
|
|
|
|
in_channels, out_channels, 1, stride=1, bias=False, padding=(kernel_size - 1) // 2)
|
|
|
|
self.bn = nn.BatchNorm2d(out_channels)
|
|
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
self.shortcut = shortcut
|
|
|
|
|
|
|
|
def forward(self, x_children: List[torch.Tensor]):
|
|
|
|
x = self.conv(torch.cat(x_children, 1))
|
|
|
|
x = self.bn(x)
|
|
|
|
if self.shortcut:
|
|
|
|
x += x_children[0]
|
|
|
|
x = self.relu(x)
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class DlaTree(nn.Module):
|
|
|
|
def __init__(
|
|
|
|
self, levels, block, in_channels, out_channels, stride=1, dilation=1, cardinality=1,
|
|
|
|
base_width=64, level_root=False, root_dim=0, root_kernel_size=1, root_shortcut=False):
|
|
|
|
super(DlaTree, self).__init__()
|
|
|
|
if root_dim == 0:
|
|
|
|
root_dim = 2 * out_channels
|
|
|
|
if level_root:
|
|
|
|
root_dim += in_channels
|
|
|
|
self.downsample = nn.MaxPool2d(stride, stride=stride) if stride > 1 else nn.Identity()
|
|
|
|
self.project = nn.Identity()
|
|
|
|
cargs = dict(dilation=dilation, cardinality=cardinality, base_width=base_width)
|
|
|
|
if levels == 1:
|
|
|
|
self.tree1 = block(in_channels, out_channels, stride, **cargs)
|
|
|
|
self.tree2 = block(out_channels, out_channels, 1, **cargs)
|
|
|
|
if in_channels != out_channels:
|
|
|
|
# NOTE the official impl/weights have project layers in levels > 1 case that are never
|
|
|
|
# used, I've moved the project layer here to avoid wasted params but old checkpoints will
|
|
|
|
# need strict=False while loading.
|
|
|
|
self.project = nn.Sequential(
|
|
|
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False),
|
|
|
|
nn.BatchNorm2d(out_channels))
|
|
|
|
self.root = DlaRoot(root_dim, out_channels, root_kernel_size, root_shortcut)
|
|
|
|
else:
|
|
|
|
cargs.update(dict(root_kernel_size=root_kernel_size, root_shortcut=root_shortcut))
|
|
|
|
self.tree1 = DlaTree(
|
|
|
|
levels - 1, block, in_channels, out_channels, stride, root_dim=0, **cargs)
|
|
|
|
self.tree2 = DlaTree(
|
|
|
|
levels - 1, block, out_channels, out_channels, root_dim=root_dim + out_channels, **cargs)
|
|
|
|
self.root = None
|
|
|
|
self.level_root = level_root
|
|
|
|
self.root_dim = root_dim
|
|
|
|
self.levels = levels
|
|
|
|
|
|
|
|
def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None):
|
|
|
|
if children is None:
|
|
|
|
children = []
|
|
|
|
bottom = self.downsample(x)
|
|
|
|
shortcut = self.project(bottom)
|
|
|
|
if self.level_root:
|
|
|
|
children.append(bottom)
|
|
|
|
x1 = self.tree1(x, shortcut)
|
|
|
|
if self.root is not None: # levels == 1
|
|
|
|
x2 = self.tree2(x1)
|
|
|
|
x = self.root([x2, x1] + children)
|
|
|
|
else:
|
|
|
|
children.append(x1)
|
|
|
|
x = self.tree2(x1, None, children)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class DLA(nn.Module):
|
|
|
|
def __init__(
|
|
|
|
self, levels, channels, output_stride=32, num_classes=1000, in_chans=3, global_pool='avg',
|
|
|
|
cardinality=1, base_width=64, block=DlaBottle2neck, shortcut_root=False, drop_rate=0.0):
|
|
|
|
super(DLA, self).__init__()
|
|
|
|
self.channels = channels
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.cardinality = cardinality
|
|
|
|
self.base_width = base_width
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
assert output_stride == 32 # FIXME support dilation
|
|
|
|
|
|
|
|
self.base_layer = nn.Sequential(
|
|
|
|
nn.Conv2d(in_chans, channels[0], kernel_size=7, stride=1, padding=3, bias=False),
|
|
|
|
nn.BatchNorm2d(channels[0]),
|
|
|
|
nn.ReLU(inplace=True))
|
|
|
|
self.level0 = self._make_conv_level(channels[0], channels[0], levels[0])
|
|
|
|
self.level1 = self._make_conv_level(channels[0], channels[1], levels[1], stride=2)
|
|
|
|
cargs = dict(cardinality=cardinality, base_width=base_width, root_shortcut=shortcut_root)
|
|
|
|
self.level2 = DlaTree(levels[2], block, channels[1], channels[2], 2, level_root=False, **cargs)
|
|
|
|
self.level3 = DlaTree(levels[3], block, channels[2], channels[3], 2, level_root=True, **cargs)
|
|
|
|
self.level4 = DlaTree(levels[4], block, channels[3], channels[4], 2, level_root=True, **cargs)
|
|
|
|
self.level5 = DlaTree(levels[5], block, channels[4], channels[5], 2, level_root=True, **cargs)
|
|
|
|
self.feature_info = [
|
|
|
|
dict(num_chs=channels[0], reduction=1, module='level0'), # rare to have a meaningful stride 1 level
|
|
|
|
dict(num_chs=channels[1], reduction=2, module='level1'),
|
|
|
|
dict(num_chs=channels[2], reduction=4, module='level2'),
|
|
|
|
dict(num_chs=channels[3], reduction=8, module='level3'),
|
|
|
|
dict(num_chs=channels[4], reduction=16, module='level4'),
|
|
|
|
dict(num_chs=channels[5], reduction=32, module='level5'),
|
|
|
|
]
|
|
|
|
|
|
|
|
self.num_features = channels[-1]
|
|
|
|
self.global_pool, self.fc = create_classifier(
|
|
|
|
self.num_features, self.num_classes, pool_type=global_pool, use_conv=True)
|
|
|
|
self.flatten = nn.Flatten(1) if global_pool else nn.Identity()
|
|
|
|
|
|
|
|
for m in self.modules():
|
|
|
|
if isinstance(m, nn.Conv2d):
|
|
|
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
|
|
m.weight.data.normal_(0, math.sqrt(2. / n))
|
|
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
|
|
m.weight.data.fill_(1)
|
|
|
|
m.bias.data.zero_()
|
|
|
|
|
|
|
|
def _make_conv_level(self, inplanes, planes, convs, stride=1, dilation=1):
|
|
|
|
modules = []
|
|
|
|
for i in range(convs):
|
|
|
|
modules.extend([
|
|
|
|
nn.Conv2d(
|
|
|
|
inplanes, planes, kernel_size=3, stride=stride if i == 0 else 1,
|
|
|
|
padding=dilation, bias=False, dilation=dilation),
|
|
|
|
nn.BatchNorm2d(planes),
|
|
|
|
nn.ReLU(inplace=True)])
|
|
|
|
inplanes = planes
|
|
|
|
return nn.Sequential(*modules)
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def group_matcher(self, coarse=False):
|
|
|
|
matcher = dict(
|
|
|
|
stem=r'^base_layer',
|
|
|
|
blocks=r'^level(\d+)' if coarse else [
|
|
|
|
# an unusual arch, this achieves somewhat more granularity without getting super messy
|
|
|
|
(r'^level(\d+)\.tree(\d+)', None),
|
|
|
|
(r'^level(\d+)\.root', (2,)),
|
|
|
|
(r'^level(\d+)', (1,))
|
|
|
|
]
|
|
|
|
)
|
|
|
|
return matcher
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def set_grad_checkpointing(self, enable=True):
|
|
|
|
assert not enable, 'gradient checkpointing not supported'
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.fc
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.global_pool, self.fc = create_classifier(
|
|
|
|
self.num_features, self.num_classes, pool_type=global_pool, use_conv=True)
|
|
|
|
self.flatten = nn.Flatten(1) if global_pool else nn.Identity()
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
x = self.base_layer(x)
|
|
|
|
x = self.level0(x)
|
|
|
|
x = self.level1(x)
|
|
|
|
x = self.level2(x)
|
|
|
|
x = self.level3(x)
|
|
|
|
x = self.level4(x)
|
|
|
|
x = self.level5(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
|
|
x = self.global_pool(x)
|
|
|
|
if self.drop_rate > 0.:
|
|
|
|
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
|
|
|
if pre_logits:
|
|
|
|
return x.flatten(1)
|
|
|
|
else:
|
|
|
|
x = self.fc(x)
|
|
|
|
return self.flatten(x)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
x = self.forward_head(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def _create_dla(variant, pretrained=False, **kwargs):
|
|
|
|
return build_model_with_cfg(
|
|
|
|
DLA, variant, pretrained,
|
|
|
|
pretrained_strict=False,
|
|
|
|
feature_cfg=dict(out_indices=(1, 2, 3, 4, 5)),
|
|
|
|
**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def dla60_res2net(pretrained=False, **kwargs):
|
|
|
|
model_kwargs = dict(
|
|
|
|
levels=(1, 1, 1, 2, 3, 1), channels=(16, 32, 128, 256, 512, 1024),
|
|
|
|
block=DlaBottle2neck, cardinality=1, base_width=28, **kwargs)
|
|
|
|
return _create_dla('dla60_res2net', pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def dla60_res2next(pretrained=False,**kwargs):
|
|
|
|
model_kwargs = dict(
|
|
|
|
levels=(1, 1, 1, 2, 3, 1), channels=(16, 32, 128, 256, 512, 1024),
|
|
|
|
block=DlaBottle2neck, cardinality=8, base_width=4, **kwargs)
|
|
|
|
return _create_dla('dla60_res2next', pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def dla34(pretrained=False, **kwargs): # DLA-34
|
|
|
|
model_kwargs = dict(
|
|
|
|
levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 128, 256, 512],
|
|
|
|
block=DlaBasic, **kwargs)
|
|
|
|
return _create_dla('dla34', pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def dla46_c(pretrained=False, **kwargs): # DLA-46-C
|
|
|
|
model_kwargs = dict(
|
|
|
|
levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 64, 128, 256],
|
|
|
|
block=DlaBottleneck, **kwargs)
|
|
|
|
return _create_dla('dla46_c', pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def dla46x_c(pretrained=False, **kwargs): # DLA-X-46-C
|
|
|
|
model_kwargs = dict(
|
|
|
|
levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 64, 128, 256],
|
|
|
|
block=DlaBottleneck, cardinality=32, base_width=4, **kwargs)
|
|
|
|
return _create_dla('dla46x_c', pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def dla60x_c(pretrained=False, **kwargs): # DLA-X-60-C
|
|
|
|
model_kwargs = dict(
|
|
|
|
levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 64, 64, 128, 256],
|
|
|
|
block=DlaBottleneck, cardinality=32, base_width=4, **kwargs)
|
|
|
|
return _create_dla('dla60x_c', pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def dla60(pretrained=False, **kwargs): # DLA-60
|
|
|
|
model_kwargs = dict(
|
|
|
|
levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 128, 256, 512, 1024],
|
|
|
|
block=DlaBottleneck, **kwargs)
|
|
|
|
return _create_dla('dla60', pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def dla60x(pretrained=False, **kwargs): # DLA-X-60
|
|
|
|
model_kwargs = dict(
|
|
|
|
levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 128, 256, 512, 1024],
|
|
|
|
block=DlaBottleneck, cardinality=32, base_width=4, **kwargs)
|
|
|
|
return _create_dla('dla60x', pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def dla102(pretrained=False, **kwargs): # DLA-102
|
|
|
|
model_kwargs = dict(
|
|
|
|
levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024],
|
|
|
|
block=DlaBottleneck, shortcut_root=True, **kwargs)
|
|
|
|
return _create_dla('dla102', pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def dla102x(pretrained=False, **kwargs): # DLA-X-102
|
|
|
|
model_kwargs = dict(
|
|
|
|
levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024],
|
|
|
|
block=DlaBottleneck, cardinality=32, base_width=4, shortcut_root=True, **kwargs)
|
|
|
|
return _create_dla('dla102x', pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def dla102x2(pretrained=False, **kwargs): # DLA-X-102 64
|
|
|
|
model_kwargs = dict(
|
|
|
|
levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024],
|
|
|
|
block=DlaBottleneck, cardinality=64, base_width=4, shortcut_root=True, **kwargs)
|
|
|
|
return _create_dla('dla102x2', pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def dla169(pretrained=False, **kwargs): # DLA-169
|
|
|
|
model_kwargs = dict(
|
|
|
|
levels=[1, 1, 2, 3, 5, 1], channels=[16, 32, 128, 256, 512, 1024],
|
|
|
|
block=DlaBottleneck, shortcut_root=True, **kwargs)
|
|
|
|
return _create_dla('dla169', pretrained, **model_kwargs)
|