# Model Architectures
__FIXME - Clean This Up!__
### ResNet / ResNeXt
* ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152, ResNeXt50 (32x4d), ResNeXt101 (32x4d and 64x4d)
* 'Bag of Tricks' / Gluon C, D, E, S variations (https://arxiv.org/abs/1812.01187)
* Instagram trained / ImageNet tuned ResNeXt101-32x8d to 32x48d from from [facebookresearch ](https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/ )
* Res2Net (https://github.com/gasvn/Res2Net, https://arxiv.org/abs/1904.01169)
* Selective Kernel (SK) Nets (https://arxiv.org/abs/1903.06586)
* ResNeSt (code adapted from https://github.com/zhanghang1989/ResNeSt, paper https://arxiv.org/abs/2004.08955)
Originally based on ResNet from [torchvision ](https://github.com/pytorch/vision/tree/master/torchvision/models )
### DLA
* Original
* code: https://github.com/ucbdrive/dla
* paper: https://arxiv.org/abs/1707.06484
* Res2Net
* code: https://github.com/gasvn/Res2Net
* paper: https://arxiv.org/abs/1904.01169
### DenseNet
* DenseNet-121, DenseNet-169, DenseNet-201, DenseNet-161
Code from [torchvision ](https://github.com/pytorch/vision/tree/master/torchvision/models )
### Squeeze-and-Excitation ResNet/ResNeXt
* SENet-154, SE-ResNet-18, SE-ResNet-34, SE-ResNet-50, SE-ResNet-101, SE-ResNet-152, SE-ResNeXt-26 (32x4d), SE-ResNeXt50 (32x4d), SE-ResNeXt101 (32x4d)
Code from [Cadene pretrained-models.pytorch ](https://github.com/Cadene/pretrained-models.pytorch ) with modifications
### Inception-V3
Code from [torchvision ](https://github.com/pytorch/vision/tree/master/torchvision/models )
### Inception-ResNet-V2 and Inception-V4
Code from [Cadene pretrained-models.pytorch ](https://github.com/Cadene/pretrained-models.pytorch )
### Xception and Aligned-Xception (DeepLab)
* Original variant from [Cadene pretrained-models.pytorch ](https://github.com/Cadene/pretrained-models.pytorch )
* MXNet Gluon 'modified aligned' Xception-65 and 71 models from [Gluon ModelZoo ](https://github.com/dmlc/gluon-cv/tree/master/gluoncv/model_zoo )
* DeepLab (Aligned) Xception-41, 65, and 71 from [Tensorflow Models ](https://github.com/tensorflow/models/tree/master/research/deeplab )
### PNasNet & NASNet-A
Code from [Cadene pretrained-models.pytorch ](https://github.com/Cadene/pretrained-models.pytorch )
### DPN
* DPN-68, DPN-68b, DPN-92, DPN-98, DPN-131, DPN-107
Code adapted by [myself ](https://github.com/rwightman/pytorch-dpn-pretrained ) from MXNet originals (https://github.com/cypw/DPNs)
### EfficientNet
* EfficientNet NoisyStudent (B0-B7, L2) (https://arxiv.org/abs/1911.04252)
* EfficientNet AdvProp (B0-B8) (https://arxiv.org/abs/1911.09665)
* EfficientNet (B0-B7) (https://arxiv.org/abs/1905.11946)
* EfficientNet-EdgeTPU (S, M, L) (https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html)
* MixNet (https://arxiv.org/abs/1907.09595)
* MNASNet B1, A1 (Squeeze-Excite), and Small (https://arxiv.org/abs/1807.11626)
* MobileNet-V2 (https://arxiv.org/abs/1801.04381)
* FBNet-C (https://arxiv.org/abs/1812.03443)
* Single-Path NAS (https://arxiv.org/abs/1904.02877)
Code from my standalone [GenEfficientNet ](https://github.com/rwightman/gen-efficientnet-pytorch ), adapted from [Tensorflow originals ](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet ).
### MobileNet-V3
* MobileNetV3-Large, MobileNetV3-Small (https://arxiv.org/abs/1905.02244)
Code from my standalone [GenEfficientNet ](https://github.com/rwightman/gen-efficientnet-pytorch ), adapted from [Tensorflow originals ](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet ).
### HRNet
* code from https://github.com/HRNet/HRNet-Image-Classification
* paper https://arxiv.org/abs/1908.07919
### SelecSLS
* paper https://arxiv.org/abs/1907.00837
* code from https://github.com/mehtadushy/SelecSLS-Pytorch
### TResNet
* paper https://arxiv.org/abs/2003.13630
* code from https://github.com/mrT23/TResNet
### RegNet
* paper `Designing Network Design Spaces` - https://arxiv.org/abs/2003.13678
* reference code at https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py
### VovNet V2 / V1
* paper `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667
* reference code at https://github.com/youngwanLEE/vovnet-detectron2
### CspNet (Cross-Stage Partial Networks)
* paper `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929
* reference impl at https://github.com/WongKinYiu/CrossStagePartialNetworks
### ReXNet
* paper `ReXNet: Diminishing Representational Bottleneck on CNN` - https://arxiv.org/abs/2007.00992
* code from https://github.com/clovaai/rexnet