You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
153 lines
5.8 KiB
153 lines
5.8 KiB
5 years ago
|
"""RAdam Optimizer.
|
||
|
Implementation lifted from: https://github.com/LiyuanLucasLiu/RAdam
|
||
|
Paper: `On the Variance of the Adaptive Learning Rate and Beyond` - https://arxiv.org/abs/1908.03265
|
||
|
"""
|
||
|
import math
|
||
|
import torch
|
||
|
from torch.optim.optimizer import Optimizer, required
|
||
|
|
||
|
|
||
|
class RAdam(Optimizer):
|
||
|
|
||
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
|
||
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
|
||
|
self.buffer = [[None, None, None] for ind in range(10)]
|
||
|
super(RAdam, self).__init__(params, defaults)
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
super(RAdam, self).__setstate__(state)
|
||
|
|
||
|
def step(self, closure=None):
|
||
|
|
||
|
loss = None
|
||
|
if closure is not None:
|
||
|
loss = closure()
|
||
|
|
||
|
for group in self.param_groups:
|
||
|
|
||
|
for p in group['params']:
|
||
|
if p.grad is None:
|
||
|
continue
|
||
|
grad = p.grad.data.float()
|
||
|
if grad.is_sparse:
|
||
|
raise RuntimeError('RAdam does not support sparse gradients')
|
||
|
|
||
|
p_data_fp32 = p.data.float()
|
||
|
|
||
|
state = self.state[p]
|
||
|
|
||
|
if len(state) == 0:
|
||
|
state['step'] = 0
|
||
|
state['exp_avg'] = torch.zeros_like(p_data_fp32)
|
||
|
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
|
||
|
else:
|
||
|
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
|
||
|
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
|
||
|
|
||
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||
|
beta1, beta2 = group['betas']
|
||
|
|
||
|
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
||
|
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
||
|
|
||
|
state['step'] += 1
|
||
|
buffered = self.buffer[int(state['step'] % 10)]
|
||
|
if state['step'] == buffered[0]:
|
||
|
N_sma, step_size = buffered[1], buffered[2]
|
||
|
else:
|
||
|
buffered[0] = state['step']
|
||
|
beta2_t = beta2 ** state['step']
|
||
|
N_sma_max = 2 / (1 - beta2) - 1
|
||
|
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
|
||
|
buffered[1] = N_sma
|
||
|
|
||
|
# more conservative since it's an approximated value
|
||
|
if N_sma >= 5:
|
||
|
step_size = group['lr'] * math.sqrt(
|
||
|
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (
|
||
|
N_sma_max - 2)) / (1 - beta1 ** state['step'])
|
||
|
else:
|
||
|
step_size = group['lr'] / (1 - beta1 ** state['step'])
|
||
|
buffered[2] = step_size
|
||
|
|
||
|
if group['weight_decay'] != 0:
|
||
|
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
|
||
|
|
||
|
# more conservative since it's an approximated value
|
||
|
if N_sma >= 5:
|
||
|
denom = exp_avg_sq.sqrt().add_(group['eps'])
|
||
|
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
|
||
|
else:
|
||
|
p_data_fp32.add_(-step_size, exp_avg)
|
||
|
|
||
|
p.data.copy_(p_data_fp32)
|
||
|
|
||
|
return loss
|
||
|
|
||
|
|
||
|
class PlainRAdam(Optimizer):
|
||
|
|
||
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
|
||
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
|
||
|
|
||
|
super(PlainRAdam, self).__init__(params, defaults)
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
super(PlainRAdam, self).__setstate__(state)
|
||
|
|
||
|
def step(self, closure=None):
|
||
|
|
||
|
loss = None
|
||
|
if closure is not None:
|
||
|
loss = closure()
|
||
|
|
||
|
for group in self.param_groups:
|
||
|
|
||
|
for p in group['params']:
|
||
|
if p.grad is None:
|
||
|
continue
|
||
|
grad = p.grad.data.float()
|
||
|
if grad.is_sparse:
|
||
|
raise RuntimeError('RAdam does not support sparse gradients')
|
||
|
|
||
|
p_data_fp32 = p.data.float()
|
||
|
|
||
|
state = self.state[p]
|
||
|
|
||
|
if len(state) == 0:
|
||
|
state['step'] = 0
|
||
|
state['exp_avg'] = torch.zeros_like(p_data_fp32)
|
||
|
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
|
||
|
else:
|
||
|
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
|
||
|
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
|
||
|
|
||
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||
|
beta1, beta2 = group['betas']
|
||
|
|
||
|
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
||
|
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
||
|
|
||
|
state['step'] += 1
|
||
|
beta2_t = beta2 ** state['step']
|
||
|
N_sma_max = 2 / (1 - beta2) - 1
|
||
|
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
|
||
|
|
||
|
if group['weight_decay'] != 0:
|
||
|
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
|
||
|
|
||
|
# more conservative since it's an approximated value
|
||
|
if N_sma >= 5:
|
||
|
step_size = group['lr'] * math.sqrt(
|
||
|
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (
|
||
|
N_sma_max - 2)) / (1 - beta1 ** state['step'])
|
||
|
denom = exp_avg_sq.sqrt().add_(group['eps'])
|
||
|
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
|
||
|
else:
|
||
|
step_size = group['lr'] / (1 - beta1 ** state['step'])
|
||
|
p_data_fp32.add_(-step_size, exp_avg)
|
||
|
|
||
|
p.data.copy_(p_data_fp32)
|
||
|
|
||
|
return loss
|