|
|
|
"""
|
|
|
|
Ported to pytorch thanks to [tstandley](https://github.com/tstandley/Xception-PyTorch)
|
|
|
|
|
|
|
|
@author: tstandley
|
|
|
|
Adapted by cadene
|
|
|
|
|
|
|
|
Creates an Xception Model as defined in:
|
|
|
|
|
|
|
|
Francois Chollet
|
|
|
|
Xception: Deep Learning with Depthwise Separable Convolutions
|
|
|
|
https://arxiv.org/pdf/1610.02357.pdf
|
|
|
|
|
|
|
|
This weights ported from the Keras implementation. Achieves the following performance on the validation set:
|
|
|
|
|
|
|
|
Loss:0.9173 Prec@1:78.892 Prec@5:94.292
|
|
|
|
|
|
|
|
REMEMBER to set your image size to 3x299x299 for both test and validation
|
|
|
|
|
|
|
|
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
|
|
|
|
std=[0.5, 0.5, 0.5])
|
|
|
|
|
|
|
|
The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299
|
|
|
|
"""
|
|
|
|
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
from .helpers import load_pretrained
|
|
|
|
from .features import FeatureNet
|
|
|
|
from .layers import SelectAdaptivePool2d
|
|
|
|
from .registry import register_model
|
|
|
|
|
|
|
|
__all__ = ['Xception']
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
'xception': {
|
|
|
|
'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/xception-43020ad28.pth',
|
|
|
|
'input_size': (3, 299, 299),
|
|
|
|
'pool_size': (10, 10),
|
|
|
|
'crop_pct': 0.8975,
|
|
|
|
'interpolation': 'bicubic',
|
|
|
|
'mean': (0.5, 0.5, 0.5),
|
|
|
|
'std': (0.5, 0.5, 0.5),
|
|
|
|
'num_classes': 1000,
|
|
|
|
'first_conv': 'conv1',
|
|
|
|
'classifier': 'fc'
|
|
|
|
# The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class SeparableConv2d(nn.Module):
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1):
|
|
|
|
super(SeparableConv2d, self).__init__()
|
|
|
|
|
|
|
|
self.conv1 = nn.Conv2d(
|
|
|
|
in_channels, in_channels, kernel_size, stride, padding, dilation, groups=in_channels, bias=False)
|
|
|
|
self.pointwise = nn.Conv2d(in_channels, out_channels, 1, 1, 0, 1, 1, bias=False)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.pointwise(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class Block(nn.Module):
|
|
|
|
def __init__(self, in_channels, out_channels, reps, strides=1, start_with_relu=True, grow_first=True):
|
|
|
|
super(Block, self).__init__()
|
|
|
|
|
|
|
|
if out_channels != in_channels or strides != 1:
|
|
|
|
self.skip = nn.Conv2d(in_channels, out_channels, 1, stride=strides, bias=False)
|
|
|
|
self.skipbn = nn.BatchNorm2d(out_channels)
|
|
|
|
else:
|
|
|
|
self.skip = None
|
|
|
|
|
|
|
|
rep = []
|
|
|
|
for i in range(reps):
|
|
|
|
if grow_first:
|
|
|
|
inc = in_channels if i == 0 else out_channels
|
|
|
|
outc = out_channels
|
|
|
|
else:
|
|
|
|
inc = in_channels
|
|
|
|
outc = in_channels if i < (reps - 1) else out_channels
|
|
|
|
rep.append(nn.ReLU(inplace=True))
|
|
|
|
rep.append(SeparableConv2d(inc, outc, 3, stride=1, padding=1))
|
|
|
|
rep.append(nn.BatchNorm2d(outc))
|
|
|
|
|
|
|
|
if not start_with_relu:
|
|
|
|
rep = rep[1:]
|
|
|
|
else:
|
|
|
|
rep[0] = nn.ReLU(inplace=False)
|
|
|
|
|
|
|
|
if strides != 1:
|
|
|
|
rep.append(nn.MaxPool2d(3, strides, 1))
|
|
|
|
self.rep = nn.Sequential(*rep)
|
|
|
|
|
|
|
|
def forward(self, inp):
|
|
|
|
x = self.rep(inp)
|
|
|
|
|
|
|
|
if self.skip is not None:
|
|
|
|
skip = self.skip(inp)
|
|
|
|
skip = self.skipbn(skip)
|
|
|
|
else:
|
|
|
|
skip = inp
|
|
|
|
|
|
|
|
x += skip
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class Xception(nn.Module):
|
|
|
|
"""
|
|
|
|
Xception optimized for the ImageNet dataset, as specified in
|
|
|
|
https://arxiv.org/pdf/1610.02357.pdf
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, num_classes=1000, in_chans=3, drop_rate=0., global_pool='avg'):
|
|
|
|
""" Constructor
|
|
|
|
Args:
|
|
|
|
num_classes: number of classes
|
|
|
|
"""
|
|
|
|
super(Xception, self).__init__()
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
self.global_pool = global_pool
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.num_features = 2048
|
|
|
|
|
|
|
|
self.conv1 = nn.Conv2d(in_chans, 32, 3, 2, 0, bias=False)
|
|
|
|
self.bn1 = nn.BatchNorm2d(32)
|
|
|
|
self.act1 = nn.ReLU(inplace=True)
|
|
|
|
|
|
|
|
self.conv2 = nn.Conv2d(32, 64, 3, bias=False)
|
|
|
|
self.bn2 = nn.BatchNorm2d(64)
|
|
|
|
self.act2 = nn.ReLU(inplace=True)
|
|
|
|
|
|
|
|
self.block1 = Block(64, 128, 2, 2, start_with_relu=False)
|
|
|
|
self.block2 = Block(128, 256, 2, 2)
|
|
|
|
self.block3 = Block(256, 728, 2, 2)
|
|
|
|
|
|
|
|
self.block4 = Block(728, 728, 3, 1)
|
|
|
|
self.block5 = Block(728, 728, 3, 1)
|
|
|
|
self.block6 = Block(728, 728, 3, 1)
|
|
|
|
self.block7 = Block(728, 728, 3, 1)
|
|
|
|
|
|
|
|
self.block8 = Block(728, 728, 3, 1)
|
|
|
|
self.block9 = Block(728, 728, 3, 1)
|
|
|
|
self.block10 = Block(728, 728, 3, 1)
|
|
|
|
self.block11 = Block(728, 728, 3, 1)
|
|
|
|
|
|
|
|
self.block12 = Block(728, 1024, 2, 2, grow_first=False)
|
|
|
|
|
|
|
|
self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1)
|
|
|
|
self.bn3 = nn.BatchNorm2d(1536)
|
|
|
|
self.act3 = nn.ReLU(inplace=True)
|
|
|
|
|
|
|
|
self.conv4 = SeparableConv2d(1536, self.num_features, 3, 1, 1)
|
|
|
|
self.bn4 = nn.BatchNorm2d(self.num_features)
|
|
|
|
self.act4 = nn.ReLU(inplace=True)
|
|
|
|
|
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
|
|
|
|
|
|
|
|
# #------- init weights --------
|
|
|
|
for m in self.modules():
|
|
|
|
if isinstance(m, nn.Conv2d):
|
|
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
|
|
m.weight.data.fill_(1)
|
|
|
|
m.bias.data.zero_()
|
|
|
|
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.fc
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
if num_classes:
|
|
|
|
num_features = self.num_features * self.global_pool.feat_mult()
|
|
|
|
self.fc = nn.Linear(num_features, num_classes)
|
|
|
|
else:
|
|
|
|
self.fc = nn.Identity()
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.bn1(x)
|
|
|
|
x = self.act1(x)
|
|
|
|
|
|
|
|
x = self.conv2(x)
|
|
|
|
x = self.bn2(x)
|
|
|
|
x = self.act2(x)
|
|
|
|
|
|
|
|
x = self.block1(x)
|
|
|
|
x = self.block2(x)
|
|
|
|
x = self.block3(x)
|
|
|
|
x = self.block4(x)
|
|
|
|
x = self.block5(x)
|
|
|
|
x = self.block6(x)
|
|
|
|
x = self.block7(x)
|
|
|
|
x = self.block8(x)
|
|
|
|
x = self.block9(x)
|
|
|
|
x = self.block10(x)
|
|
|
|
x = self.block11(x)
|
|
|
|
x = self.block12(x)
|
|
|
|
|
|
|
|
x = self.conv3(x)
|
|
|
|
x = self.bn3(x)
|
|
|
|
x = self.act3(x)
|
|
|
|
|
|
|
|
x = self.conv4(x)
|
|
|
|
x = self.bn4(x)
|
|
|
|
x = self.act4(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
x = self.global_pool(x).flatten(1)
|
|
|
|
if self.drop_rate:
|
|
|
|
F.dropout(x, self.drop_rate, training=self.training)
|
|
|
|
x = self.fc(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def _xception(variant, pretrained=False, **kwargs):
|
|
|
|
load_strict = True
|
|
|
|
features = False
|
|
|
|
out_indices = None
|
|
|
|
if kwargs.pop('features_only', False):
|
|
|
|
load_strict = False
|
|
|
|
features = True
|
|
|
|
kwargs.pop('num_classes', 0)
|
|
|
|
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3, 4))
|
|
|
|
model = Xception(**kwargs)
|
|
|
|
model.default_cfg = default_cfgs[variant]
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(
|
|
|
|
model,
|
|
|
|
num_classes=kwargs.get('num_classes', 0),
|
|
|
|
in_chans=kwargs.get('in_chans', 3),
|
|
|
|
strict=load_strict)
|
|
|
|
if features:
|
|
|
|
model = FeatureNet(model, out_indices)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def xception(pretrained=False, **kwargs):
|
|
|
|
return _xception('xception', pretrained=pretrained, **kwargs)
|