pytorch-image-models/hfdocs/source/models/regnety.mdx

573 lines
16 KiB

# RegNetY
**RegNetY** is a convolutional network design space with simple, regular models with parameters: depth $d$, initial width $w\_{0} > 0$, and slope $w\_{a} > 0$, and generates a different block width $u\_{j}$ for each block $j < d$. The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure):
$$ u\_{j} = w\_{0} + w\_{a}\cdot{j} $$
For **RegNetX** authors have additional restrictions: we set $b = 1$ (the bottleneck ratio), $12 \leq d \leq 28$, and $w\_{m} \geq 2$ (the width multiplier).
For **RegNetY** authors make one change, which is to include [Squeeze-and-Excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block).
## How do I use this model on an image?
To load a pretrained model:
```py
>>> import timm
>>> model = timm.create_model('regnety_002', pretrained=True)
>>> model.eval()
```
To load and preprocess the image:
```py
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform
>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)
>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```py
>>> import torch
>>> with torch.no_grad():
... out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
... categories = [s.strip() for s in f.readlines()]
>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
... print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
Replace the model name with the variant you want to use, e.g. `regnety_002`. You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```py
>>> model = timm.create_model('regnety_002', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
## Citation
```BibTeX
@misc{radosavovic2020designing,
title={Designing Network Design Spaces},
author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár},
year={2020},
eprint={2003.13678},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Type: model-index
Collections:
- Name: RegNetY
Paper:
Title: Designing Network Design Spaces
URL: https://paperswithcode.com/paper/designing-network-design-spaces
Models:
- Name: regnety_002
In Collection: RegNetY
Metadata:
FLOPs: 255754236
Parameters: 3160000
File Size: 12782926
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA V100 GPUs
ID: regnety_002
Epochs: 100
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 1024
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L409
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_002-e68ca334.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 70.28%
Top 5 Accuracy: 89.55%
- Name: regnety_004
In Collection: RegNetY
Metadata:
FLOPs: 515664568
Parameters: 4340000
File Size: 17542753
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA V100 GPUs
ID: regnety_004
Epochs: 100
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 1024
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L415
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_004-0db870e6.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 74.02%
Top 5 Accuracy: 91.76%
- Name: regnety_006
In Collection: RegNetY
Metadata:
FLOPs: 771746928
Parameters: 6060000
File Size: 24394127
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA V100 GPUs
ID: regnety_006
Epochs: 100
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 1024
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L421
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_006-c67e57ec.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 75.27%
Top 5 Accuracy: 92.53%
- Name: regnety_008
In Collection: RegNetY
Metadata:
FLOPs: 1023448952
Parameters: 6260000
File Size: 25223268
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA V100 GPUs
ID: regnety_008
Epochs: 100
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 1024
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L427
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_008-dc900dbe.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 76.32%
Top 5 Accuracy: 93.07%
- Name: regnety_016
In Collection: RegNetY
Metadata:
FLOPs: 2070895094
Parameters: 11200000
File Size: 45115589
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA V100 GPUs
ID: regnety_016
Epochs: 100
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 1024
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L433
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_016-54367f74.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 77.87%
Top 5 Accuracy: 93.73%
- Name: regnety_032
In Collection: RegNetY
Metadata:
FLOPs: 4081118714
Parameters: 19440000
File Size: 78084523
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA V100 GPUs
ID: regnety_032
Epochs: 100
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 512
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L439
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/regnety_032_ra-7f2439f9.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 82.01%
Top 5 Accuracy: 95.91%
- Name: regnety_040
In Collection: RegNetY
Metadata:
FLOPs: 5105933432
Parameters: 20650000
File Size: 82913909
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA V100 GPUs
ID: regnety_040
Epochs: 100
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 512
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L445
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_040-f0d569f9.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.23%
Top 5 Accuracy: 94.64%
- Name: regnety_064
In Collection: RegNetY
Metadata:
FLOPs: 8167730444
Parameters: 30580000
File Size: 122751416
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA V100 GPUs
ID: regnety_064
Epochs: 100
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 512
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L451
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_064-0a48325c.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.73%
Top 5 Accuracy: 94.76%
- Name: regnety_080
In Collection: RegNetY
Metadata:
FLOPs: 10233621420
Parameters: 39180000
File Size: 157124671
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA V100 GPUs
ID: regnety_080
Epochs: 100
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 512
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L457
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_080-e7f3eb93.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.87%
Top 5 Accuracy: 94.83%
- Name: regnety_120
In Collection: RegNetY
Metadata:
FLOPs: 15542094856
Parameters: 51820000
File Size: 207743949
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA V100 GPUs
ID: regnety_120
Epochs: 100
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 512
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L463
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_120-721ba79a.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.38%
Top 5 Accuracy: 95.12%
- Name: regnety_160
In Collection: RegNetY
Metadata:
FLOPs: 20450196852
Parameters: 83590000
File Size: 334916722
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA V100 GPUs
ID: regnety_160
Epochs: 100
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 512
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L469
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_160-d64013cd.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.28%
Top 5 Accuracy: 94.97%
- Name: regnety_320
In Collection: RegNetY
Metadata:
FLOPs: 41492618394
Parameters: 145050000
File Size: 580891965
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA V100 GPUs
ID: regnety_320
Epochs: 100
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 256
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L475
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_320-ba464b29.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.8%
Top 5 Accuracy: 95.25%
-->