You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/bits/metric_accuracy.py

72 lines
2.2 KiB

import torch
from typing import Optional, Tuple, Dict
from .device_env import DeviceEnv
from .metric import Metric, ValueInfo
class Accuracy(Metric):
def __init__(
self,
threshold=0.5,
multi_label=False,
accumulate_dtype=torch.float32,
dev_env=None,
):
super().__init__(dev_env=dev_env)
self.accumulate_dtype = accumulate_dtype
self.threshold = threshold
self.eps = 1e-8
self.multi_label = multi_label
# statistics / counts
self._register_value('correct', ValueInfo(dtype=accumulate_dtype))
self._register_value('total', ValueInfo(dtype=accumulate_dtype))
def _update(self, predictions, target):
raise NotImplemented()
def _compute(self):
raise NotImplemented()
class AccuracyTopK(Metric):
def __init__(
self,
topk=(1, 5),
accumulate_dtype=torch.float32,
dev_env: DeviceEnv = None
):
super().__init__(dev_env=dev_env)
self.accumulate_dtype = accumulate_dtype
self.eps = 1e-8
self.topk = topk
self.maxk = max(topk)
# statistics / counts
for k in self.topk:
self._register_value(f'top{k}', ValueInfo(dtype=accumulate_dtype))
self._register_value('total', ValueInfo(dtype=accumulate_dtype))
self.reset()
def _update(self, predictions: torch.Tensor, target: torch.Tensor):
batch_size = predictions.shape[0]
sorted_indices = predictions.topk(self.maxk, dim=1)[1]
target_reshape = target.reshape(-1, 1).expand_as(sorted_indices)
correct = sorted_indices.eq(target_reshape).to(dtype=self.accumulate_dtype).sum(0)
for k in self.topk:
attr_name = f'top{k}'
correct_at_k = correct[:k].sum()
setattr(self, attr_name, getattr(self, attr_name) + correct_at_k)
self.total += batch_size
def _compute(self) -> Dict[str, torch.Tensor]:
assert self.total is not None
output = {}
for k in self.topk:
attr_name = f'top{k}'
output[attr_name] = 100 * getattr(self, attr_name) / self.total
return output