You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/loss/binary_cross_entropy.py

48 lines
2.0 KiB

""" Binary Cross Entropy w/ a few extras
Hacked together by / Copyright 2021 Ross Wightman
"""
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
class BinaryCrossEntropy(nn.Module):
""" BCE with optional one-hot from dense targets, label smoothing, thresholding
NOTE for experiments comparing CE to BCE /w label smoothing, may remove
"""
def __init__(
self, smoothing=0.1, target_threshold: Optional[float] = None, weight: Optional[torch.Tensor] = None,
reduction: str = 'mean', pos_weight: Optional[torch.Tensor] = None):
super(BinaryCrossEntropy, self).__init__()
assert 0. <= smoothing < 1.0
self.smoothing = smoothing
self.target_threshold = target_threshold
self.reduction = reduction
self.register_buffer('weight', weight)
self.register_buffer('pos_weight', pos_weight)
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
assert x.shape[0] == target.shape[0]
if target.shape != x.shape:
# NOTE currently assume smoothing or other label softening is applied upstream if targets are already sparse
num_classes = x.shape[-1]
# FIXME should off/on be different for smoothing w/ BCE? Other impl out there differ
off_value = self.smoothing / num_classes
on_value = 1. - self.smoothing + off_value
target = target.long().view(-1, 1)
target = torch.full(
(target.size()[0], num_classes),
off_value,
device=x.device, dtype=x.dtype).scatter_(1, target, on_value)
if self.target_threshold is not None:
# Make target 0, or 1 if threshold set
target = target.gt(self.target_threshold).to(dtype=target.dtype)
return F.binary_cross_entropy_with_logits(
x, target,
self.weight,
pos_weight=self.pos_weight,
reduction=self.reduction)