You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
324 lines
11 KiB
324 lines
11 KiB
4 years ago
|
"""
|
||
|
An implementation of GhostNet Model as defined in:
|
||
|
GhostNet: More Features from Cheap Operations. https://arxiv.org/abs/1911.11907
|
||
|
The train script of the model is similar to that of MobileNetV3
|
||
|
Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch
|
||
|
"""
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
import math
|
||
|
|
||
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||
|
from .layers import SelectAdaptivePool2d
|
||
|
from .helpers import build_model_with_cfg
|
||
|
from .registry import register_model
|
||
|
|
||
|
|
||
|
__all__ = ['GhostNet']
|
||
|
|
||
|
|
||
|
def _cfg(url='', **kwargs):
|
||
|
return {
|
||
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (1, 1),
|
||
|
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
||
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||
|
'first_conv': 'conv_stem', 'classifier': 'classifier',
|
||
|
**kwargs
|
||
|
}
|
||
|
|
||
|
|
||
|
default_cfgs = {
|
||
|
'ghostnet_050': _cfg(url=''),
|
||
|
'ghostnet_100': _cfg(
|
||
|
url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth'),
|
||
|
'ghostnet_130': _cfg(url=''),
|
||
|
}
|
||
|
|
||
|
|
||
|
def _make_divisible(v, divisor, min_value=None):
|
||
|
"""
|
||
|
This function is taken from the original tf repo.
|
||
|
It ensures that all layers have a channel number that is divisible by 8
|
||
|
It can be seen here:
|
||
|
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
||
|
"""
|
||
|
if min_value is None:
|
||
|
min_value = divisor
|
||
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
||
|
# Make sure that round down does not go down by more than 10%.
|
||
|
if new_v < 0.9 * v:
|
||
|
new_v += divisor
|
||
|
return new_v
|
||
|
|
||
|
|
||
|
def hard_sigmoid(x, inplace: bool = False):
|
||
|
if inplace:
|
||
|
return x.add_(3.).clamp_(0., 6.).div_(6.)
|
||
|
else:
|
||
|
return F.relu6(x + 3.) / 6.
|
||
|
|
||
|
|
||
|
class SqueezeExcite(nn.Module):
|
||
|
def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None,
|
||
|
act_layer=nn.ReLU, gate_fn=hard_sigmoid, divisor=4, **_):
|
||
|
super(SqueezeExcite, self).__init__()
|
||
|
self.gate_fn = gate_fn
|
||
|
reduced_chs = _make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor)
|
||
|
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
||
|
self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
|
||
|
self.act1 = act_layer(inplace=True)
|
||
|
self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x_se = self.avg_pool(x)
|
||
|
x_se = self.conv_reduce(x_se)
|
||
|
x_se = self.act1(x_se)
|
||
|
x_se = self.conv_expand(x_se)
|
||
|
x = x * self.gate_fn(x_se)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class ConvBnAct(nn.Module):
|
||
|
def __init__(self, in_chs, out_chs, kernel_size,
|
||
|
stride=1, act_layer=nn.ReLU):
|
||
|
super(ConvBnAct, self).__init__()
|
||
|
self.conv = nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size//2, bias=False)
|
||
|
self.bn1 = nn.BatchNorm2d(out_chs)
|
||
|
self.act1 = act_layer(inplace=True)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.conv(x)
|
||
|
x = self.bn1(x)
|
||
|
x = self.act1(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class GhostModule(nn.Module):
|
||
|
def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True):
|
||
|
super(GhostModule, self).__init__()
|
||
|
self.oup = oup
|
||
|
init_channels = math.ceil(oup / ratio)
|
||
|
new_channels = init_channels*(ratio-1)
|
||
|
|
||
|
self.primary_conv = nn.Sequential(
|
||
|
nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False),
|
||
|
nn.BatchNorm2d(init_channels),
|
||
|
nn.ReLU(inplace=True) if relu else nn.Sequential(),
|
||
|
)
|
||
|
|
||
|
self.cheap_operation = nn.Sequential(
|
||
|
nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False),
|
||
|
nn.BatchNorm2d(new_channels),
|
||
|
nn.ReLU(inplace=True) if relu else nn.Sequential(),
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x1 = self.primary_conv(x)
|
||
|
x2 = self.cheap_operation(x1)
|
||
|
out = torch.cat([x1,x2], dim=1)
|
||
|
return out[:,:self.oup,:,:]
|
||
|
|
||
|
|
||
|
class GhostBottleneck(nn.Module):
|
||
|
""" Ghost bottleneck w/ optional SE"""
|
||
|
|
||
|
def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3,
|
||
|
stride=1, act_layer=nn.ReLU, se_ratio=0.):
|
||
|
super(GhostBottleneck, self).__init__()
|
||
|
has_se = se_ratio is not None and se_ratio > 0.
|
||
|
self.stride = stride
|
||
|
|
||
|
# Point-wise expansion
|
||
|
self.ghost1 = GhostModule(in_chs, mid_chs, relu=True)
|
||
|
|
||
|
# Depth-wise convolution
|
||
|
if self.stride > 1:
|
||
|
self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride=stride,
|
||
|
padding=(dw_kernel_size-1)//2,
|
||
|
groups=mid_chs, bias=False)
|
||
|
self.bn_dw = nn.BatchNorm2d(mid_chs)
|
||
|
|
||
|
# Squeeze-and-excitation
|
||
|
if has_se:
|
||
|
self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio)
|
||
|
else:
|
||
|
self.se = None
|
||
|
|
||
|
# Point-wise linear projection
|
||
|
self.ghost2 = GhostModule(mid_chs, out_chs, relu=False)
|
||
|
|
||
|
# shortcut
|
||
|
if (in_chs == out_chs and self.stride == 1):
|
||
|
self.shortcut = nn.Sequential()
|
||
|
else:
|
||
|
self.shortcut = nn.Sequential(
|
||
|
nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride,
|
||
|
padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False),
|
||
|
nn.BatchNorm2d(in_chs),
|
||
|
nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False),
|
||
|
nn.BatchNorm2d(out_chs),
|
||
|
)
|
||
|
|
||
|
|
||
|
def forward(self, x):
|
||
|
residual = x
|
||
|
|
||
|
# 1st ghost bottleneck
|
||
|
x = self.ghost1(x)
|
||
|
|
||
|
# Depth-wise convolution
|
||
|
if self.stride > 1:
|
||
|
x = self.conv_dw(x)
|
||
|
x = self.bn_dw(x)
|
||
|
|
||
|
# Squeeze-and-excitation
|
||
|
if self.se is not None:
|
||
|
x = self.se(x)
|
||
|
|
||
|
# 2nd ghost bottleneck
|
||
|
x = self.ghost2(x)
|
||
|
|
||
|
x += self.shortcut(residual)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class GhostNet(nn.Module):
|
||
|
def __init__(self, cfgs, num_classes=1000, width=1.0, dropout=0.2, in_chans=3):
|
||
|
super(GhostNet, self).__init__()
|
||
|
# setting of inverted residual blocks
|
||
|
self.cfgs = cfgs
|
||
|
self.num_classes = num_classes
|
||
|
self.dropout = dropout
|
||
|
self.feature_info = []
|
||
|
|
||
|
# building first layer
|
||
|
output_channel = _make_divisible(16 * width, 4)
|
||
|
self.conv_stem = nn.Conv2d(in_chans, output_channel, 3, 2, 1, bias=False)
|
||
|
self.feature_info.append(dict(num_chs=output_channel, reduction=2, module=f'conv_stem'))
|
||
|
self.bn1 = nn.BatchNorm2d(output_channel)
|
||
|
self.act1 = nn.ReLU(inplace=True)
|
||
|
input_channel = output_channel
|
||
|
|
||
|
# building inverted residual blocks
|
||
|
stages = nn.ModuleList([])
|
||
|
block = GhostBottleneck
|
||
|
stage_idx = 0
|
||
|
for cfg in self.cfgs:
|
||
|
layers = []
|
||
|
for k, exp_size, c, se_ratio, s in cfg:
|
||
|
output_channel = _make_divisible(c * width, 4)
|
||
|
hidden_channel = _make_divisible(exp_size * width, 4)
|
||
|
layers.append(block(input_channel, hidden_channel, output_channel, k, s,
|
||
|
se_ratio=se_ratio))
|
||
|
input_channel = output_channel
|
||
|
if s > 1:
|
||
|
self.feature_info.append(dict(num_chs=output_channel, reduction=2**(stage_idx+2),
|
||
|
module=f'blocks.{stage_idx}'))
|
||
|
stages.append(nn.Sequential(*layers))
|
||
|
stage_idx += 1
|
||
|
|
||
|
output_channel = _make_divisible(exp_size * width, 4)
|
||
|
stages.append(nn.Sequential(ConvBnAct(input_channel, output_channel, 1)))
|
||
|
self.pool_dim = input_channel = output_channel
|
||
|
|
||
|
self.blocks = nn.Sequential(*stages)
|
||
|
|
||
|
# building last several layers
|
||
|
self.num_features = output_channel = 1280
|
||
|
self.global_pool = SelectAdaptivePool2d(pool_type='avg')
|
||
|
self.conv_head = nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=True)
|
||
|
self.act2 = nn.ReLU(inplace=True)
|
||
|
self.classifier = nn.Linear(output_channel, num_classes)
|
||
|
|
||
|
def get_classifier(self):
|
||
|
return self.classifier
|
||
|
|
||
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
||
|
self.num_classes = num_classes
|
||
|
# cannot meaningfully change pooling of efficient head after creation
|
||
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
||
|
self.classifier = Linear(self.pool_dim, num_classes) if num_classes > 0 else nn.Identity()
|
||
|
|
||
|
def forward_features(self, x):
|
||
|
x = self.conv_stem(x)
|
||
|
x = self.bn1(x)
|
||
|
x = self.act1(x)
|
||
|
x = self.blocks(x)
|
||
|
x = self.global_pool(x)
|
||
|
x = self.conv_head(x)
|
||
|
x = self.act2(x)
|
||
|
return x
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.forward_features(x)
|
||
|
if not self.global_pool.is_identity():
|
||
|
x = x.view(x.size(0), -1)
|
||
|
if self.dropout > 0.:
|
||
|
x = F.dropout(x, p=self.dropout, training=self.training)
|
||
|
x = self.classifier(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs):
|
||
|
"""
|
||
|
Constructs a GhostNet model
|
||
|
"""
|
||
|
cfgs = [
|
||
|
# k, t, c, SE, s
|
||
|
# stage1
|
||
|
[[3, 16, 16, 0, 1]],
|
||
|
# stage2
|
||
|
[[3, 48, 24, 0, 2]],
|
||
|
[[3, 72, 24, 0, 1]],
|
||
|
# stage3
|
||
|
[[5, 72, 40, 0.25, 2]],
|
||
|
[[5, 120, 40, 0.25, 1]],
|
||
|
# stage4
|
||
|
[[3, 240, 80, 0, 2]],
|
||
|
[[3, 200, 80, 0, 1],
|
||
|
[3, 184, 80, 0, 1],
|
||
|
[3, 184, 80, 0, 1],
|
||
|
[3, 480, 112, 0.25, 1],
|
||
|
[3, 672, 112, 0.25, 1]
|
||
|
],
|
||
|
# stage5
|
||
|
[[5, 672, 160, 0.25, 2]],
|
||
|
[[5, 960, 160, 0, 1],
|
||
|
[5, 960, 160, 0.25, 1],
|
||
|
[5, 960, 160, 0, 1],
|
||
|
[5, 960, 160, 0.25, 1]
|
||
|
]
|
||
|
]
|
||
|
model_kwargs = dict(
|
||
|
cfgs=cfgs,
|
||
|
width=width,
|
||
|
**kwargs,
|
||
|
)
|
||
|
return build_model_with_cfg(
|
||
|
GhostNet, variant, pretrained,
|
||
|
default_cfg=default_cfgs[variant],
|
||
|
feature_cfg=dict(flatten_sequential=True),
|
||
|
**model_kwargs)
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def ghostnet_050(pretrained=False, **kwargs):
|
||
|
""" GhostNet-0.5x """
|
||
|
model = _create_ghostnet('ghostnet_050', width=0.5, pretrained=pretrained, **kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def ghostnet_100(pretrained=False, **kwargs):
|
||
|
""" GhostNet-1.0x """
|
||
|
model = _create_ghostnet('ghostnet_100', width=1.0, pretrained=pretrained, **kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def ghostnet_130(pretrained=False, **kwargs):
|
||
|
""" GhostNet-1.3x """
|
||
|
model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs)
|
||
|
return model
|