You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/docs/models/.templates/models/selecsls.md

137 lines
3.8 KiB

# SelecSLS
**SelecSLS** uses novel selective long and short range skip connections to improve the information flow allowing for a drastically faster network without compromising accuracy.
{% include 'code_snippets.md' %}
## How do I train this model?
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
## Citation
```BibTeX
@article{Mehta_2020,
title={XNect},
volume={39},
ISSN={1557-7368},
url={http://dx.doi.org/10.1145/3386569.3392410},
DOI={10.1145/3386569.3392410},
number={4},
journal={ACM Transactions on Graphics},
publisher={Association for Computing Machinery (ACM)},
author={Mehta, Dushyant and Sotnychenko, Oleksandr and Mueller, Franziska and Xu, Weipeng and Elgharib, Mohamed and Fua, Pascal and Seidel, Hans-Peter and Rhodin, Helge and Pons-Moll, Gerard and Theobalt, Christian},
year={2020},
month={Jul}
}
```
<!--
Type: model-index
Collections:
- Name: SelecSLS
Paper:
Title: 'XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera'
URL: https://paperswithcode.com/paper/xnect-real-time-multi-person-3d-human-pose
Models:
- Name: selecsls42b
In Collection: SelecSLS
Metadata:
FLOPs: 3824022528
Parameters: 32460000
File Size: 129948954
Architecture:
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Global Average Pooling
- ReLU
- SelecSLS Block
Tasks:
- Image Classification
Training Techniques:
- Cosine Annealing
- Random Erasing
Training Data:
- ImageNet
ID: selecsls42b
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/selecsls.py#L335
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls42b-8af30141.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 77.18%
Top 5 Accuracy: 93.39%
- Name: selecsls60
In Collection: SelecSLS
Metadata:
FLOPs: 4610472600
Parameters: 30670000
File Size: 122839714
Architecture:
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Global Average Pooling
- ReLU
- SelecSLS Block
Tasks:
- Image Classification
Training Techniques:
- Cosine Annealing
- Random Erasing
Training Data:
- ImageNet
ID: selecsls60
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/selecsls.py#L342
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60-bbf87526.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 77.99%
Top 5 Accuracy: 93.83%
- Name: selecsls60b
In Collection: SelecSLS
Metadata:
FLOPs: 4657653144
Parameters: 32770000
File Size: 131252898
Architecture:
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Global Average Pooling
- ReLU
- SelecSLS Block
Tasks:
- Image Classification
Training Techniques:
- Cosine Annealing
- Random Erasing
Training Data:
- ImageNet
ID: selecsls60b
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/selecsls.py#L349
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60b-94e619b5.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.41%
Top 5 Accuracy: 94.18%
-->