pytorch-image-models/docs/models/mobilenet-v2.md

271 lines
8.5 KiB

# MobileNet v2
**MobileNetV2** is a convolutional neural network architecture that seeks to perform well on mobile devices. It is based on an [inverted residual structure](https://paperswithcode.com/method/inverted-residual-block) where the residual connections are between the bottleneck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. As a whole, the architecture of MobileNetV2 contains the initial fully convolution layer with 32 filters, followed by 19 residual bottleneck layers.
## How do I use this model on an image?
To load a pretrained model:
```python
import timm
model = timm.create_model('mobilenetv2_100', pretrained=True)
model.eval()
```
To load and preprocess the image:
```python
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
config = resolve_data_config({}, model=model)
transform = create_transform(**config)
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```python
import torch
with torch.no_grad():
out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename)
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
Replace the model name with the variant you want to use, e.g. `mobilenetv2_100`. You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('mobilenetv2_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
## Citation
```BibTeX
@article{DBLP:journals/corr/abs-1801-04381,
author = {Mark Sandler and
Andrew G. Howard and
Menglong Zhu and
Andrey Zhmoginov and
Liang{-}Chieh Chen},
title = {Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification,
Detection and Segmentation},
journal = {CoRR},
volume = {abs/1801.04381},
year = {2018},
url = {http://arxiv.org/abs/1801.04381},
archivePrefix = {arXiv},
eprint = {1801.04381},
timestamp = {Tue, 12 Jan 2021 15:30:06 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1801-04381.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<!--
Type: model-index
Collections:
- Name: MobileNet V2
Paper:
Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks'
URL: https://paperswithcode.com/paper/mobilenetv2-inverted-residuals-and-linear
Models:
- Name: mobilenetv2_100
In Collection: MobileNet V2
Metadata:
FLOPs: 401920448
Parameters: 3500000
File Size: 14202571
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Depthwise Separable Convolution
- Dropout
- Inverted Residual Block
- Max Pooling
- ReLU6
- Residual Connection
- Softmax
Tasks:
- Image Classification
Training Techniques:
- RMSProp
- Weight Decay
Training Data:
- ImageNet
Training Resources: 16x GPUs
ID: mobilenetv2_100
LR: 0.045
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 1536
Image Size: '224'
Weight Decay: 4.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L955
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_100_ra-b33bc2c4.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 72.95%
Top 5 Accuracy: 91.0%
- Name: mobilenetv2_110d
In Collection: MobileNet V2
Metadata:
FLOPs: 573958832
Parameters: 4520000
File Size: 18316431
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Depthwise Separable Convolution
- Dropout
- Inverted Residual Block
- Max Pooling
- ReLU6
- Residual Connection
- Softmax
Tasks:
- Image Classification
Training Techniques:
- RMSProp
- Weight Decay
Training Data:
- ImageNet
Training Resources: 16x GPUs
ID: mobilenetv2_110d
LR: 0.045
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 1536
Image Size: '224'
Weight Decay: 4.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L969
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_110d_ra-77090ade.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 75.05%
Top 5 Accuracy: 92.19%
- Name: mobilenetv2_120d
In Collection: MobileNet V2
Metadata:
FLOPs: 888510048
Parameters: 5830000
File Size: 23651121
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Depthwise Separable Convolution
- Dropout
- Inverted Residual Block
- Max Pooling
- ReLU6
- Residual Connection
- Softmax
Tasks:
- Image Classification
Training Techniques:
- RMSProp
- Weight Decay
Training Data:
- ImageNet
Training Resources: 16x GPUs
ID: mobilenetv2_120d
LR: 0.045
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 1536
Image Size: '224'
Weight Decay: 4.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L977
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_120d_ra-5987e2ed.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 77.28%
Top 5 Accuracy: 93.51%
- Name: mobilenetv2_140
In Collection: MobileNet V2
Metadata:
FLOPs: 770196784
Parameters: 6110000
File Size: 24673555
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Depthwise Separable Convolution
- Dropout
- Inverted Residual Block
- Max Pooling
- ReLU6
- Residual Connection
- Softmax
Tasks:
- Image Classification
Training Techniques:
- RMSProp
- Weight Decay
Training Data:
- ImageNet
Training Resources: 16x GPUs
ID: mobilenetv2_140
LR: 0.045
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 1536
Image Size: '224'
Weight Decay: 4.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L962
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_140_ra-21a4e913.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 76.51%
Top 5 Accuracy: 93.0%
-->