|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import os
|
|
|
|
import time
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.parallel
|
|
|
|
|
|
|
|
from models import create_model, apply_test_time_pool
|
|
|
|
from data import Dataset, create_loader, get_mean_and_std
|
|
|
|
from utils import accuracy, AverageMeter
|
|
|
|
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation')
|
|
|
|
parser.add_argument('data', metavar='DIR',
|
|
|
|
help='path to dataset')
|
|
|
|
parser.add_argument('--model', '-m', metavar='MODEL', default='dpn92',
|
|
|
|
help='model architecture (default: dpn92)')
|
|
|
|
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
|
|
|
|
help='number of data loading workers (default: 2)')
|
|
|
|
parser.add_argument('-b', '--batch-size', default=256, type=int,
|
|
|
|
metavar='N', help='mini-batch size (default: 256)')
|
|
|
|
parser.add_argument('--img-size', default=224, type=int,
|
|
|
|
metavar='N', help='Input image dimension')
|
|
|
|
parser.add_argument('--num-classes', type=int, default=1000,
|
|
|
|
help='Number classes in dataset')
|
|
|
|
parser.add_argument('--print-freq', '-p', default=10, type=int,
|
|
|
|
metavar='N', help='print frequency (default: 10)')
|
|
|
|
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
|
|
|
|
help='path to latest checkpoint (default: none)')
|
|
|
|
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
|
|
|
|
help='use pre-trained model')
|
|
|
|
parser.add_argument('--num-gpu', type=int, default=1,
|
|
|
|
help='Number of GPUS to use')
|
|
|
|
parser.add_argument('--no-test-pool', dest='no_test_pool', action='store_true',
|
|
|
|
help='disable test time pool for DPN models')
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
# create model
|
|
|
|
model = create_model(
|
|
|
|
args.model,
|
|
|
|
num_classes=args.num_classes,
|
|
|
|
in_chans=3,
|
|
|
|
pretrained=args.pretrained,
|
|
|
|
checkpoint_path=args.checkpoint)
|
|
|
|
|
|
|
|
print('Model %s created, param count: %d' %
|
|
|
|
(args.model, sum([m.numel() for m in model.parameters()])))
|
|
|
|
|
|
|
|
data_mean, data_std = get_mean_and_std(model, args)
|
|
|
|
|
|
|
|
model, test_time_pool = apply_test_time_pool(model, args)
|
|
|
|
|
|
|
|
if args.num_gpu > 1:
|
|
|
|
model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda()
|
|
|
|
else:
|
|
|
|
model = model.cuda()
|
|
|
|
|
|
|
|
# define loss function (criterion) and optimizer
|
|
|
|
criterion = nn.CrossEntropyLoss().cuda()
|
|
|
|
|
|
|
|
loader = create_loader(
|
|
|
|
Dataset(args.data),
|
|
|
|
img_size=args.img_size,
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
use_prefetcher=False,
|
|
|
|
mean=data_mean,
|
|
|
|
std=data_std,
|
|
|
|
num_workers=args.workers,
|
|
|
|
crop_pct=1.0 if test_time_pool else None)
|
|
|
|
|
|
|
|
batch_time = AverageMeter()
|
|
|
|
losses = AverageMeter()
|
|
|
|
top1 = AverageMeter()
|
|
|
|
top5 = AverageMeter()
|
|
|
|
|
|
|
|
# switch to evaluate mode
|
|
|
|
model.eval()
|
|
|
|
end = time.time()
|
|
|
|
with torch.no_grad():
|
|
|
|
for i, (input, target) in enumerate(loader):
|
|
|
|
target = target.cuda()
|
|
|
|
input = input.cuda()
|
|
|
|
|
|
|
|
# compute output
|
|
|
|
output = model(input)
|
|
|
|
loss = criterion(output, target)
|
|
|
|
|
|
|
|
# measure accuracy and record loss
|
|
|
|
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
|
|
|
|
losses.update(loss.item(), input.size(0))
|
|
|
|
top1.update(prec1.item(), input.size(0))
|
|
|
|
top5.update(prec5.item(), input.size(0))
|
|
|
|
|
|
|
|
# measure elapsed time
|
|
|
|
batch_time.update(time.time() - end)
|
|
|
|
end = time.time()
|
|
|
|
|
|
|
|
if i % args.print_freq == 0:
|
|
|
|
print('Test: [{0}/{1}]\t'
|
|
|
|
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {rate_avg:.3f}/s) \t'
|
|
|
|
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
|
|
|
|
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
|
|
|
|
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
|
|
|
|
i, len(loader), batch_time=batch_time,
|
|
|
|
rate_avg=input.size(0) / batch_time.avg,
|
|
|
|
loss=losses, top1=top1, top5=top5))
|
|
|
|
|
|
|
|
print(' * Prec@1 {top1.avg:.3f} ({top1a:.3f}) Prec@5 {top5.avg:.3f} ({top5a:.3f})'.format(
|
|
|
|
top1=top1, top1a=100-top1.avg, top5=top5, top5a=100.-top5.avg))
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|