You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/models/xception.py

238 lines
7.6 KiB

"""
Ported to pytorch thanks to [tstandley](https://github.com/tstandley/Xception-PyTorch)
@author: tstandley
Adapted by cadene
Creates an Xception Model as defined in:
Francois Chollet
Xception: Deep Learning with Depthwise Separable Convolutions
https://arxiv.org/pdf/1610.02357.pdf
This weights ported from the Keras implementation. Achieves the following performance on the validation set:
Loss:0.9173 Prec@1:78.892 Prec@5:94.292
REMEMBER to set your image size to 3x299x299 for both test and validation
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299
"""
from __future__ import print_function, division, absolute_import
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.helpers import load_pretrained
from models.adaptive_avgmax_pool import select_adaptive_pool2d
__all__ = ['xception']
default_cfgs = {
'xception': {
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/xception-43020ad28.pth',
'input_size': (3, 299, 299),
'mean': (0.5, 0.5, 0.5),
'std': (0.5, 0.5, 0.5),
'num_classes': 1000,
'crop_pct': 0.8975,
'first_conv': 'conv1',
'classifier': 'fc'
# The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299
}
}
class SeparableConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False):
super(SeparableConv2d, self).__init__()
self.conv1 = nn.Conv2d(
in_channels, in_channels, kernel_size, stride, padding, dilation, groups=in_channels, bias=bias)
self.pointwise = nn.Conv2d(in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias)
def forward(self, x):
x = self.conv1(x)
x = self.pointwise(x)
return x
class Block(nn.Module):
def __init__(self, in_filters, out_filters, reps, strides=1, start_with_relu=True, grow_first=True):
super(Block, self).__init__()
if out_filters != in_filters or strides != 1:
self.skip = nn.Conv2d(in_filters, out_filters, 1, stride=strides, bias=False)
self.skipbn = nn.BatchNorm2d(out_filters)
else:
self.skip = None
self.relu = nn.ReLU(inplace=True)
rep = []
filters = in_filters
if grow_first:
rep.append(self.relu)
rep.append(SeparableConv2d(in_filters, out_filters, 3, stride=1, padding=1, bias=False))
rep.append(nn.BatchNorm2d(out_filters))
filters = out_filters
for i in range(reps - 1):
rep.append(self.relu)
rep.append(SeparableConv2d(filters, filters, 3, stride=1, padding=1, bias=False))
rep.append(nn.BatchNorm2d(filters))
if not grow_first:
rep.append(self.relu)
rep.append(SeparableConv2d(in_filters, out_filters, 3, stride=1, padding=1, bias=False))
rep.append(nn.BatchNorm2d(out_filters))
if not start_with_relu:
rep = rep[1:]
else:
rep[0] = nn.ReLU(inplace=False)
if strides != 1:
rep.append(nn.MaxPool2d(3, strides, 1))
self.rep = nn.Sequential(*rep)
def forward(self, inp):
x = self.rep(inp)
if self.skip is not None:
skip = self.skip(inp)
skip = self.skipbn(skip)
else:
skip = inp
x += skip
return x
class Xception(nn.Module):
"""
Xception optimized for the ImageNet dataset, as specified in
https://arxiv.org/pdf/1610.02357.pdf
"""
def __init__(self, num_classes=1000, in_chans=3, drop_rate=0., global_pool='avg'):
""" Constructor
Args:
num_classes: number of classes
"""
super(Xception, self).__init__()
self.drop_rate = drop_rate
self.global_pool = global_pool
self.num_classes = num_classes
self.num_features = 2048
self.conv1 = nn.Conv2d(in_chans, 32, 3, 2, 0, bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32, 64, 3, bias=False)
self.bn2 = nn.BatchNorm2d(64)
# do relu here
self.block1 = Block(64, 128, 2, 2, start_with_relu=False, grow_first=True)
self.block2 = Block(128, 256, 2, 2, start_with_relu=True, grow_first=True)
self.block3 = Block(256, 728, 2, 2, start_with_relu=True, grow_first=True)
self.block4 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block5 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block6 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block7 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block8 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block9 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block10 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block11 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block12 = Block(728, 1024, 2, 2, start_with_relu=True, grow_first=False)
self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1)
self.bn3 = nn.BatchNorm2d(1536)
# do relu here
self.conv4 = SeparableConv2d(1536, self.num_features, 3, 1, 1)
self.bn4 = nn.BatchNorm2d(self.num_features)
self.fc = nn.Linear(self.num_features, num_classes)
# #------- init weights --------
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def get_classifier(self):
return self.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool = global_pool
del self.fc
if num_classes:
self.fc = nn.Linear(self.num_features, num_classes)
else:
self.fc = None
def forward_features(self, input, pool=True):
x = self.conv1(input)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
x = self.block5(x)
x = self.block6(x)
x = self.block7(x)
x = self.block8(x)
x = self.block9(x)
x = self.block10(x)
x = self.block11(x)
x = self.block12(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = self.conv4(x)
x = self.bn4(x)
x = self.relu(x)
if pool:
x = select_adaptive_pool2d(x, pool_type=self.global_pool)
x = x.view(x.size(0), -1)
return x
def forward(self, input):
x = self.forward_features(input)
if self.drop_rate:
F.dropout(x, self.drop_rate, training=self.training)
x = self.fc(x)
return x
def xception(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
default_cfg = default_cfgs['xception']
model = Xception(num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model