|
|
|
""" Model Registry
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
|
|
"""
|
|
|
|
|
|
|
|
import fnmatch
|
|
|
|
import re
|
|
|
|
import sys
|
|
|
|
from collections import defaultdict, deque
|
|
|
|
from copy import deepcopy
|
|
|
|
from typing import Optional, Tuple
|
|
|
|
|
|
|
|
from ._pretrained import PretrainedCfg, DefaultCfg, split_model_name_tag
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
'list_models', 'is_model', 'model_entrypoint', 'list_modules', 'is_model_in_modules',
|
|
|
|
'get_pretrained_cfg_value', 'is_model_pretrained', 'get_arch_name']
|
|
|
|
|
|
|
|
_module_to_models = defaultdict(set) # dict of sets to check membership of model in module
|
|
|
|
_model_to_module = {} # mapping of model names to module names
|
|
|
|
_model_entrypoints = {} # mapping of model names to architecture entrypoint fns
|
|
|
|
_model_has_pretrained = set() # set of model names that have pretrained weight url present
|
|
|
|
_model_default_cfgs = dict() # central repo for model arch -> default cfg objects
|
|
|
|
_model_pretrained_cfgs = dict() # central repo for model arch + tag -> pretrained cfgs
|
|
|
|
_model_with_tags = defaultdict(list) # shortcut to map each model arch to all model + tag names
|
|
|
|
|
|
|
|
|
|
|
|
def get_arch_name(model_name: str) -> Tuple[str, Optional[str]]:
|
|
|
|
return split_model_name_tag(model_name)[0]
|
|
|
|
|
|
|
|
|
|
|
|
def register_model(fn):
|
|
|
|
# lookup containing module
|
|
|
|
mod = sys.modules[fn.__module__]
|
|
|
|
module_name_split = fn.__module__.split('.')
|
|
|
|
module_name = module_name_split[-1] if len(module_name_split) else ''
|
|
|
|
|
|
|
|
# add model to __all__ in module
|
|
|
|
model_name = fn.__name__
|
|
|
|
if hasattr(mod, '__all__'):
|
|
|
|
mod.__all__.append(model_name)
|
|
|
|
else:
|
|
|
|
mod.__all__ = [model_name]
|
|
|
|
|
|
|
|
# add entries to registry dict/sets
|
|
|
|
_model_entrypoints[model_name] = fn
|
|
|
|
_model_to_module[model_name] = module_name
|
|
|
|
_module_to_models[module_name].add(model_name)
|
|
|
|
if hasattr(mod, 'default_cfgs') and model_name in mod.default_cfgs:
|
|
|
|
# this will catch all models that have entrypoint matching cfg key, but miss any aliasing
|
|
|
|
# entrypoints or non-matching combos
|
|
|
|
cfg = mod.default_cfgs[model_name]
|
|
|
|
if not isinstance(cfg, DefaultCfg):
|
|
|
|
# new style default cfg dataclass w/ multiple entries per model-arch
|
|
|
|
assert isinstance(cfg, dict)
|
|
|
|
# old style cfg dict per model-arch
|
|
|
|
cfg = PretrainedCfg(**cfg)
|
|
|
|
cfg = DefaultCfg(tags=deque(['']), cfgs={'': cfg})
|
|
|
|
|
|
|
|
for tag_idx, tag in enumerate(cfg.tags):
|
|
|
|
is_default = tag_idx == 0
|
|
|
|
pretrained_cfg = cfg.cfgs[tag]
|
|
|
|
if is_default:
|
|
|
|
_model_pretrained_cfgs[model_name] = pretrained_cfg
|
|
|
|
if pretrained_cfg.has_weights:
|
|
|
|
# add tagless entry if it's default and has weights
|
|
|
|
_model_has_pretrained.add(model_name)
|
|
|
|
if tag:
|
|
|
|
model_name_tag = '.'.join([model_name, tag])
|
|
|
|
_model_pretrained_cfgs[model_name_tag] = pretrained_cfg
|
|
|
|
if pretrained_cfg.has_weights:
|
|
|
|
# add model w/ tag if tag is valid
|
|
|
|
_model_has_pretrained.add(model_name_tag)
|
|
|
|
_model_with_tags[model_name].append(model_name_tag)
|
|
|
|
else:
|
|
|
|
_model_with_tags[model_name].append(model_name) # has empty tag (to slowly remove these instances)
|
|
|
|
|
|
|
|
_model_default_cfgs[model_name] = cfg
|
|
|
|
|
|
|
|
return fn
|
|
|
|
|
|
|
|
|
|
|
|
def _natural_key(string_):
|
|
|
|
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
|
|
|
|
|
|
|
|
|
|
|
|
def list_models(
|
|
|
|
filter: str = '',
|
|
|
|
module: str = '',
|
|
|
|
pretrained=False,
|
|
|
|
exclude_filters: str = '',
|
|
|
|
name_matches_cfg: bool = False,
|
|
|
|
include_tags: Optional[bool] = None,
|
|
|
|
):
|
|
|
|
""" Return list of available model names, sorted alphabetically
|
|
|
|
|
|
|
|
Args:
|
|
|
|
filter (str) - Wildcard filter string that works with fnmatch
|
|
|
|
module (str) - Limit model selection to a specific submodule (ie 'vision_transformer')
|
|
|
|
pretrained (bool) - Include only models with valid pretrained weights if True
|
|
|
|
exclude_filters (str or list[str]) - Wildcard filters to exclude models after including them with filter
|
|
|
|
name_matches_cfg (bool) - Include only models w/ model_name matching default_cfg name (excludes some aliases)
|
|
|
|
include_tags (Optional[boo]) - Include pretrained tags in model names (model.tag). If None, defaults
|
|
|
|
set to True when pretrained=True else False (default: None)
|
|
|
|
Example:
|
|
|
|
model_list('gluon_resnet*') -- returns all models starting with 'gluon_resnet'
|
|
|
|
model_list('*resnext*, 'resnet') -- returns all models with 'resnext' in 'resnet' module
|
|
|
|
"""
|
|
|
|
if include_tags is None:
|
|
|
|
# FIXME should this be default behaviour? or default to include_tags=True?
|
|
|
|
include_tags = pretrained
|
|
|
|
|
|
|
|
if module:
|
|
|
|
all_models = list(_module_to_models[module])
|
|
|
|
else:
|
|
|
|
all_models = _model_entrypoints.keys()
|
|
|
|
|
|
|
|
# FIXME wildcard filter tag as well as model arch name
|
|
|
|
|
|
|
|
if filter:
|
|
|
|
models = []
|
|
|
|
include_filters = filter if isinstance(filter, (tuple, list)) else [filter]
|
|
|
|
for f in include_filters:
|
|
|
|
include_models = fnmatch.filter(all_models, f) # include these models
|
|
|
|
if len(include_models):
|
|
|
|
models = set(models).union(include_models)
|
|
|
|
else:
|
|
|
|
models = all_models
|
|
|
|
|
|
|
|
if exclude_filters:
|
|
|
|
if not isinstance(exclude_filters, (tuple, list)):
|
|
|
|
exclude_filters = [exclude_filters]
|
|
|
|
for xf in exclude_filters:
|
|
|
|
exclude_models = fnmatch.filter(models, xf) # exclude these models
|
|
|
|
if len(exclude_models):
|
|
|
|
models = set(models).difference(exclude_models)
|
|
|
|
|
|
|
|
if include_tags:
|
|
|
|
# expand model names to include names w/ pretrained tags
|
|
|
|
models_with_tags = []
|
|
|
|
for m in models:
|
|
|
|
models_with_tags.extend(_model_with_tags[m])
|
|
|
|
models = models_with_tags
|
|
|
|
|
|
|
|
if pretrained:
|
|
|
|
models = _model_has_pretrained.intersection(models)
|
|
|
|
|
|
|
|
if name_matches_cfg:
|
|
|
|
models = set(_model_pretrained_cfgs).intersection(models)
|
|
|
|
|
|
|
|
return list(sorted(models, key=_natural_key))
|
|
|
|
|
|
|
|
|
|
|
|
def is_model(model_name):
|
|
|
|
""" Check if a model name exists
|
|
|
|
"""
|
|
|
|
arch_name = get_arch_name(model_name)
|
|
|
|
return arch_name in _model_entrypoints
|
|
|
|
|
|
|
|
|
|
|
|
def model_entrypoint(model_name):
|
|
|
|
"""Fetch a model entrypoint for specified model name
|
|
|
|
"""
|
|
|
|
arch_name = get_arch_name(model_name)
|
|
|
|
return _model_entrypoints[arch_name]
|
|
|
|
|
|
|
|
|
|
|
|
def list_modules():
|
|
|
|
""" Return list of module names that contain models / model entrypoints
|
|
|
|
"""
|
|
|
|
modules = _module_to_models.keys()
|
|
|
|
return list(sorted(modules))
|
|
|
|
|
|
|
|
|
|
|
|
def is_model_in_modules(model_name, module_names):
|
|
|
|
"""Check if a model exists within a subset of modules
|
|
|
|
Args:
|
|
|
|
model_name (str) - name of model to check
|
|
|
|
module_names (tuple, list, set) - names of modules to search in
|
|
|
|
"""
|
|
|
|
arch_name = get_arch_name(model_name)
|
|
|
|
assert isinstance(module_names, (tuple, list, set))
|
|
|
|
return any(arch_name in _module_to_models[n] for n in module_names)
|
|
|
|
|
|
|
|
|
|
|
|
def is_model_pretrained(model_name):
|
|
|
|
return model_name in _model_has_pretrained
|
|
|
|
|
|
|
|
|
|
|
|
def get_pretrained_cfg(model_name):
|
|
|
|
if model_name in _model_pretrained_cfgs:
|
|
|
|
return deepcopy(_model_pretrained_cfgs[model_name])
|
|
|
|
raise RuntimeError(f'No pretrained config exists for model {model_name}.')
|
|
|
|
|
|
|
|
|
|
|
|
def get_pretrained_cfg_value(model_name, cfg_key):
|
|
|
|
""" Get a specific model default_cfg value by key. None if key doesn't exist.
|
|
|
|
"""
|
|
|
|
if model_name in _model_pretrained_cfgs:
|
|
|
|
return getattr(_model_pretrained_cfgs[model_name], cfg_key, None)
|
|
|
|
raise RuntimeError(f'No pretrained config exist for model {model_name}.')
|