You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/models/helpers.py

856 lines
34 KiB

""" Model creation / weight loading / state_dict helpers
Hacked together by / Copyright 2020 Ross Wightman
"""
import collections.abc
import dataclasses
import logging
import math
import os
import re
from collections import OrderedDict, defaultdict
from copy import deepcopy
from itertools import chain
from typing import Any, Callable, Optional, Tuple, Dict, Union
import torch
5 years ago
import torch.nn as nn
from torch.hub import load_state_dict_from_url
from torch.utils.checkpoint import checkpoint
from ._pretrained import PretrainedCfg
from .features import FeatureListNet, FeatureDictNet, FeatureHookNet
from .fx_features import FeatureGraphNet
from .hub import has_hf_hub, download_cached_file, load_state_dict_from_hf
from .layers import Conv2dSame, Linear, BatchNormAct2d
from .registry import get_pretrained_cfg
_logger = logging.getLogger(__name__)
# Global variables for rarely used pretrained checkpoint download progress and hash check.
# Use set_pretrained_download_progress / set_pretrained_check_hash functions to toggle.
_DOWNLOAD_PROGRESS = False
_CHECK_HASH = False
def clean_state_dict(state_dict):
# 'clean' checkpoint by removing .module prefix from state dict if it exists from parallel training
cleaned_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] if k.startswith('module.') else k
cleaned_state_dict[name] = v
return cleaned_state_dict
def load_state_dict(checkpoint_path, use_ema=True):
if checkpoint_path and os.path.isfile(checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict_key = ''
if isinstance(checkpoint, dict):
if use_ema and checkpoint.get('state_dict_ema', None) is not None:
state_dict_key = 'state_dict_ema'
elif use_ema and checkpoint.get('model_ema', None) is not None:
state_dict_key = 'model_ema'
elif 'state_dict' in checkpoint:
state_dict_key = 'state_dict'
elif 'model' in checkpoint:
state_dict_key = 'model'
state_dict = clean_state_dict(checkpoint[state_dict_key] if state_dict_key else checkpoint)
_logger.info("Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path))
return state_dict
else:
_logger.error("No checkpoint found at '{}'".format(checkpoint_path))
raise FileNotFoundError()
def load_checkpoint(model, checkpoint_path, use_ema=True, strict=True, remap=False):
if os.path.splitext(checkpoint_path)[-1].lower() in ('.npz', '.npy'):
# numpy checkpoint, try to load via model specific load_pretrained fn
if hasattr(model, 'load_pretrained'):
model.load_pretrained(checkpoint_path)
else:
raise NotImplementedError('Model cannot load numpy checkpoint')
return
state_dict = load_state_dict(checkpoint_path, use_ema)
if remap:
state_dict = remap_checkpoint(model, state_dict)
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
return incompatible_keys
def remap_checkpoint(model, state_dict, allow_reshape=True):
""" remap checkpoint by iterating over state dicts in order (ignoring original keys).
This assumes models (and originating state dict) were created with params registered in same order.
"""
out_dict = {}
for (ka, va), (kb, vb) in zip(model.state_dict().items(), state_dict.items()):
assert va.numel == vb.numel, f'Tensor size mismatch {ka}: {va.shape} vs {kb}: {vb.shape}. Remap failed.'
if va.shape != vb.shape:
if allow_reshape:
vb = vb.reshape(va.shape)
else:
assert False, f'Tensor shape mismatch {ka}: {va.shape} vs {kb}: {vb.shape}. Remap failed.'
out_dict[ka] = vb
return out_dict
def resume_checkpoint(model, checkpoint_path, optimizer=None, loss_scaler=None, log_info=True):
resume_epoch = None
if os.path.isfile(checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
if log_info:
_logger.info('Restoring model state from checkpoint...')
state_dict = clean_state_dict(checkpoint['state_dict'])
model.load_state_dict(state_dict)
if optimizer is not None and 'optimizer' in checkpoint:
if log_info:
_logger.info('Restoring optimizer state from checkpoint...')
optimizer.load_state_dict(checkpoint['optimizer'])
if loss_scaler is not None and loss_scaler.state_dict_key in checkpoint:
if log_info:
_logger.info('Restoring AMP loss scaler state from checkpoint...')
loss_scaler.load_state_dict(checkpoint[loss_scaler.state_dict_key])
if 'epoch' in checkpoint:
resume_epoch = checkpoint['epoch']
if 'version' in checkpoint and checkpoint['version'] > 1:
resume_epoch += 1 # start at the next epoch, old checkpoints incremented before save
if log_info:
_logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch']))
else:
model.load_state_dict(checkpoint)
if log_info:
_logger.info("Loaded checkpoint '{}'".format(checkpoint_path))
return resume_epoch
else:
_logger.error("No checkpoint found at '{}'".format(checkpoint_path))
raise FileNotFoundError()
def _resolve_pretrained_source(pretrained_cfg):
cfg_source = pretrained_cfg.get('source', '')
pretrained_url = pretrained_cfg.get('url', None)
pretrained_file = pretrained_cfg.get('file', None)
hf_hub_id = pretrained_cfg.get('hf_hub_id', None)
# resolve where to load pretrained weights from
load_from = ''
pretrained_loc = ''
if cfg_source == 'hf-hub' and has_hf_hub(necessary=True):
# hf-hub specified as source via model identifier
load_from = 'hf-hub'
assert hf_hub_id
pretrained_loc = hf_hub_id
else:
# default source == timm or unspecified
if pretrained_file:
load_from = 'file'
pretrained_loc = pretrained_file
elif pretrained_url:
load_from = 'url'
pretrained_loc = pretrained_url
elif hf_hub_id and has_hf_hub(necessary=True):
# hf-hub available as alternate weight source in default_cfg
load_from = 'hf-hub'
pretrained_loc = hf_hub_id
if load_from == 'hf-hub' and pretrained_cfg.get('hf_hub_filename', None):
# if a filename override is set, return tuple for location w/ (hub_id, filename)
pretrained_loc = pretrained_loc, pretrained_cfg['hf_hub_filename']
return load_from, pretrained_loc
def set_pretrained_download_progress(enable=True):
""" Set download progress for pretrained weights on/off (globally). """
global _DOWNLOAD_PROGRESS
_DOWNLOAD_PROGRESS = enable
def set_pretrained_check_hash(enable=True):
""" Set hash checking for pretrained weights on/off (globally). """
global _CHECK_HASH
_CHECK_HASH = enable
def load_custom_pretrained(
model: nn.Module,
pretrained_cfg: Optional[Dict] = None,
load_fn: Optional[Callable] = None,
):
r"""Loads a custom (read non .pth) weight file
Downloads checkpoint file into cache-dir like torch.hub based loaders, but calls
a passed in custom load fun, or the `load_pretrained` model member fn.
If the object is already present in `model_dir`, it's deserialized and returned.
The default value of `model_dir` is ``<hub_dir>/checkpoints`` where
`hub_dir` is the directory returned by :func:`~torch.hub.get_dir`.
Args:
model: The instantiated model to load weights into
pretrained_cfg (dict): Default pretrained model cfg
load_fn: An external standalone fn that loads weights into provided model, otherwise a fn named
'laod_pretrained' on the model will be called if it exists
"""
pretrained_cfg = pretrained_cfg or getattr(model, 'pretrained_cfg', None)
if not pretrained_cfg:
_logger.warning("Invalid pretrained config, cannot load weights.")
return
load_from, pretrained_loc = _resolve_pretrained_source(pretrained_cfg)
if not load_from:
_logger.warning("No pretrained weights exist for this model. Using random initialization.")
return
if load_from == 'hf-hub': # FIXME
_logger.warning("Hugging Face hub not currently supported for custom load pretrained models.")
elif load_from == 'url':
pretrained_loc = download_cached_file(
pretrained_loc,
check_hash=_CHECK_HASH,
progress=_DOWNLOAD_PROGRESS
)
if load_fn is not None:
load_fn(model, pretrained_loc)
elif hasattr(model, 'load_pretrained'):
model.load_pretrained(pretrained_loc)
else:
_logger.warning("Valid function to load pretrained weights is not available, using random initialization.")
def adapt_input_conv(in_chans, conv_weight):
conv_type = conv_weight.dtype
conv_weight = conv_weight.float() # Some weights are in torch.half, ensure it's float for sum on CPU
O, I, J, K = conv_weight.shape
if in_chans == 1:
if I > 3:
assert conv_weight.shape[1] % 3 == 0
# For models with space2depth stems
conv_weight = conv_weight.reshape(O, I // 3, 3, J, K)
conv_weight = conv_weight.sum(dim=2, keepdim=False)
else:
conv_weight = conv_weight.sum(dim=1, keepdim=True)
elif in_chans != 3:
if I != 3:
raise NotImplementedError('Weight format not supported by conversion.')
else:
# NOTE this strategy should be better than random init, but there could be other combinations of
# the original RGB input layer weights that'd work better for specific cases.
repeat = int(math.ceil(in_chans / 3))
conv_weight = conv_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :]
conv_weight *= (3 / float(in_chans))
conv_weight = conv_weight.to(conv_type)
return conv_weight
def load_pretrained(
model: nn.Module,
pretrained_cfg: Optional[Dict] = None,
num_classes: int = 1000,
in_chans: int = 3,
filter_fn: Optional[Callable] = None,
strict: bool = True,
):
""" Load pretrained checkpoint
Args:
model (nn.Module) : PyTorch model module
pretrained_cfg (Optional[Dict]): configuration for pretrained weights / target dataset
num_classes (int): num_classes for target model
in_chans (int): in_chans for target model
filter_fn (Optional[Callable]): state_dict filter fn for load (takes state_dict, model as args)
strict (bool): strict load of checkpoint
"""
pretrained_cfg = pretrained_cfg or getattr(model, 'pretrained_cfg', None)
if not pretrained_cfg:
_logger.warning("Invalid pretrained config, cannot load weights.")
return
load_from, pretrained_loc = _resolve_pretrained_source(pretrained_cfg)
if load_from == 'file':
_logger.info(f'Loading pretrained weights from file ({pretrained_loc})')
state_dict = load_state_dict(pretrained_loc)
elif load_from == 'url':
_logger.info(f'Loading pretrained weights from url ({pretrained_loc})')
state_dict = load_state_dict_from_url(
pretrained_loc,
map_location='cpu',
progress=_DOWNLOAD_PROGRESS,
check_hash=_CHECK_HASH,
)
elif load_from == 'hf-hub':
_logger.info(f'Loading pretrained weights from Hugging Face hub ({pretrained_loc})')
if isinstance(pretrained_loc, (list, tuple)):
state_dict = load_state_dict_from_hf(*pretrained_loc)
else:
state_dict = load_state_dict_from_hf(pretrained_loc)
else:
_logger.warning("No pretrained weights exist or were found for this model. Using random initialization.")
return
if filter_fn is not None:
# for backwards compat with filter fn that take one arg, try one first, the two
try:
state_dict = filter_fn(state_dict)
except TypeError:
state_dict = filter_fn(state_dict, model)
input_convs = pretrained_cfg.get('first_conv', None)
if input_convs is not None and in_chans != 3:
if isinstance(input_convs, str):
input_convs = (input_convs,)
for input_conv_name in input_convs:
weight_name = input_conv_name + '.weight'
try:
state_dict[weight_name] = adapt_input_conv(in_chans, state_dict[weight_name])
_logger.info(
f'Converted input conv {input_conv_name} pretrained weights from 3 to {in_chans} channel(s)')
except NotImplementedError as e:
del state_dict[weight_name]
strict = False
_logger.warning(
f'Unable to convert pretrained {input_conv_name} weights, using random init for this layer.')
classifiers = pretrained_cfg.get('classifier', None)
label_offset = pretrained_cfg.get('label_offset', 0)
if classifiers is not None:
if isinstance(classifiers, str):
classifiers = (classifiers,)
if num_classes != pretrained_cfg['num_classes']:
for classifier_name in classifiers:
# completely discard fully connected if model num_classes doesn't match pretrained weights
state_dict.pop(classifier_name + '.weight', None)
state_dict.pop(classifier_name + '.bias', None)
strict = False
elif label_offset > 0:
for classifier_name in classifiers:
# special case for pretrained weights with an extra background class in pretrained weights
classifier_weight = state_dict[classifier_name + '.weight']
state_dict[classifier_name + '.weight'] = classifier_weight[label_offset:]
classifier_bias = state_dict[classifier_name + '.bias']
state_dict[classifier_name + '.bias'] = classifier_bias[label_offset:]
model.load_state_dict(state_dict, strict=strict)
5 years ago
def extract_layer(model, layer):
layer = layer.split('.')
module = model
if hasattr(model, 'module') and layer[0] != 'module':
module = model.module
if not hasattr(model, 'module') and layer[0] == 'module':
layer = layer[1:]
for l in layer:
if hasattr(module, l):
if not l.isdigit():
module = getattr(module, l)
else:
module = module[int(l)]
else:
return module
return module
def set_layer(model, layer, val):
layer = layer.split('.')
module = model
if hasattr(model, 'module') and layer[0] != 'module':
module = model.module
lst_index = 0
module2 = module
for l in layer:
if hasattr(module2, l):
if not l.isdigit():
module2 = getattr(module2, l)
else:
module2 = module2[int(l)]
lst_index += 1
lst_index -= 1
for l in layer[:lst_index]:
if not l.isdigit():
module = getattr(module, l)
else:
module = module[int(l)]
l = layer[lst_index]
setattr(module, l, val)
def adapt_model_from_string(parent_module, model_string):
separator = '***'
state_dict = {}
lst_shape = model_string.split(separator)
for k in lst_shape:
k = k.split(':')
key = k[0]
shape = k[1][1:-1].split(',')
if shape[0] != '':
state_dict[key] = [int(i) for i in shape]
new_module = deepcopy(parent_module)
for n, m in parent_module.named_modules():
old_module = extract_layer(parent_module, n)
if isinstance(old_module, nn.Conv2d) or isinstance(old_module, Conv2dSame):
if isinstance(old_module, Conv2dSame):
conv = Conv2dSame
else:
conv = nn.Conv2d
s = state_dict[n + '.weight']
in_channels = s[1]
out_channels = s[0]
g = 1
5 years ago
if old_module.groups > 1:
in_channels = out_channels
g = in_channels
new_conv = conv(
in_channels=in_channels, out_channels=out_channels, kernel_size=old_module.kernel_size,
bias=old_module.bias is not None, padding=old_module.padding, dilation=old_module.dilation,
groups=g, stride=old_module.stride)
5 years ago
set_layer(new_module, n, new_conv)
elif isinstance(old_module, BatchNormAct2d):
new_bn = BatchNormAct2d(
state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum,
affine=old_module.affine, track_running_stats=True)
new_bn.drop = old_module.drop
new_bn.act = old_module.act
set_layer(new_module, n, new_bn)
elif isinstance(old_module, nn.BatchNorm2d):
new_bn = nn.BatchNorm2d(
num_features=state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum,
affine=old_module.affine, track_running_stats=True)
5 years ago
set_layer(new_module, n, new_bn)
elif isinstance(old_module, nn.Linear):
# FIXME extra checks to ensure this is actually the FC classifier layer and not a diff Linear layer?
num_features = state_dict[n + '.weight'][1]
new_fc = Linear(
in_features=num_features, out_features=old_module.out_features, bias=old_module.bias is not None)
5 years ago
set_layer(new_module, n, new_fc)
if hasattr(new_module, 'num_features'):
new_module.num_features = num_features
5 years ago
new_module.eval()
parent_module.eval()
return new_module
def adapt_model_from_file(parent_module, model_variant):
adapt_file = os.path.join(os.path.dirname(__file__), 'pruned', model_variant + '.txt')
with open(adapt_file, 'r') as f:
return adapt_model_from_string(parent_module, f.read().strip())
def pretrained_cfg_for_features(pretrained_cfg):
pretrained_cfg = deepcopy(pretrained_cfg)
# remove default pretrained cfg fields that don't have much relevance for feature backbone
to_remove = ('num_classes', 'classifier', 'global_pool') # add default final pool size?
for tr in to_remove:
pretrained_cfg.pop(tr, None)
return pretrained_cfg
def _filter_kwargs(kwargs, names):
if not kwargs or not names:
return
for n in names:
kwargs.pop(n, None)
def _update_default_kwargs(pretrained_cfg, kwargs, kwargs_filter):
""" Update the default_cfg and kwargs before passing to model
Args:
pretrained_cfg: input pretrained cfg (updated in-place)
kwargs: keyword args passed to model build fn (updated in-place)
kwargs_filter: keyword arg keys that must be removed before model __init__
"""
# Set model __init__ args that can be determined by default_cfg (if not already passed as kwargs)
default_kwarg_names = ('num_classes', 'global_pool', 'in_chans')
if pretrained_cfg.get('fixed_input_size', False):
# if fixed_input_size exists and is True, model takes an img_size arg that fixes its input size
default_kwarg_names += ('img_size',)
for n in default_kwarg_names:
# for legacy reasons, model __init__args uses img_size + in_chans as separate args while
# pretrained_cfg has one input_size=(C, H ,W) entry
if n == 'img_size':
input_size = pretrained_cfg.get('input_size', None)
if input_size is not None:
assert len(input_size) == 3
kwargs.setdefault(n, input_size[-2:])
elif n == 'in_chans':
input_size = pretrained_cfg.get('input_size', None)
if input_size is not None:
assert len(input_size) == 3
kwargs.setdefault(n, input_size[0])
else:
default_val = pretrained_cfg.get(n, None)
if default_val is not None:
kwargs.setdefault(n, pretrained_cfg[n])
# Filter keyword args for task specific model variants (some 'features only' models, etc.)
_filter_kwargs(kwargs, names=kwargs_filter)
def resolve_pretrained_cfg(
variant: str,
pretrained_cfg=None,
pretrained_cfg_overlay=None,
) -> PretrainedCfg:
model_with_tag = variant
pretrained_tag = None
if pretrained_cfg:
if isinstance(pretrained_cfg, dict):
# pretrained_cfg dict passed as arg, validate by converting to PretrainedCfg
pretrained_cfg = PretrainedCfg(**pretrained_cfg)
elif isinstance(pretrained_cfg, str):
pretrained_tag = pretrained_cfg
pretrained_cfg = None
# fallback to looking up pretrained cfg in model registry by variant identifier
if not pretrained_cfg:
if pretrained_tag:
model_with_tag = '.'.join([variant, pretrained_tag])
pretrained_cfg = get_pretrained_cfg(model_with_tag)
if not pretrained_cfg:
_logger.warning(
f"No pretrained configuration specified for {model_with_tag} model. Using a default."
f" Please add a config to the model pretrained_cfg registry or pass explicitly.")
pretrained_cfg = PretrainedCfg() # instance with defaults
pretrained_cfg_overlay = pretrained_cfg_overlay or {}
if not pretrained_cfg.architecture:
pretrained_cfg_overlay.setdefault('architecture', variant)
pretrained_cfg = dataclasses.replace(pretrained_cfg, **pretrained_cfg_overlay)
return pretrained_cfg
def build_model_with_cfg(
model_cls: Callable,
variant: str,
pretrained: bool,
pretrained_cfg: Optional[Dict] = None,
pretrained_cfg_overlay: Optional[Dict] = None,
model_cfg: Optional[Any] = None,
feature_cfg: Optional[Dict] = None,
pretrained_strict: bool = True,
pretrained_filter_fn: Optional[Callable] = None,
kwargs_filter: Optional[Tuple[str]] = None,
**kwargs,
):
""" Build model with specified default_cfg and optional model_cfg
This helper fn aids in the construction of a model including:
* handling default_cfg and associated pretrained weight loading
* passing through optional model_cfg for models with config based arch spec
* features_only model adaptation
* pruning config / model adaptation
Args:
model_cls (nn.Module): model class
variant (str): model variant name
pretrained (bool): load pretrained weights
pretrained_cfg (dict): model's pretrained weight/task config
model_cfg (Optional[Dict]): model's architecture config
feature_cfg (Optional[Dict]: feature extraction adapter config
pretrained_strict (bool): load pretrained weights strictly
pretrained_filter_fn (Optional[Callable]): filter callable for pretrained weights
kwargs_filter (Optional[Tuple]): kwargs to filter before passing to model
**kwargs: model args passed through to model __init__
"""
pruned = kwargs.pop('pruned', False)
features = False
feature_cfg = feature_cfg or {}
# resolve and update model pretrained config and model kwargs
pretrained_cfg = resolve_pretrained_cfg(
variant,
pretrained_cfg=pretrained_cfg,
pretrained_cfg_overlay=pretrained_cfg_overlay
)
# FIXME converting back to dict, PretrainedCfg use should be propagated further, but not into model
pretrained_cfg = dataclasses.asdict(pretrained_cfg)
_update_default_kwargs(pretrained_cfg, kwargs, kwargs_filter)
# Setup for feature extraction wrapper done at end of this fn
if kwargs.pop('features_only', False):
features = True
feature_cfg.setdefault('out_indices', (0, 1, 2, 3, 4))
if 'out_indices' in kwargs:
feature_cfg['out_indices'] = kwargs.pop('out_indices')
# Instantiate the model
if model_cfg is None:
model = model_cls(**kwargs)
else:
model = model_cls(cfg=model_cfg, **kwargs)
model.pretrained_cfg = pretrained_cfg
model.default_cfg = model.pretrained_cfg # alias for backwards compat
if pruned:
model = adapt_model_from_file(model, variant)
# For classification models, check class attr, then kwargs, then default to 1k, otherwise 0 for feats
num_classes_pretrained = 0 if features else getattr(model, 'num_classes', kwargs.get('num_classes', 1000))
if pretrained:
if pretrained_cfg.get('custom_load', False):
load_custom_pretrained(
model,
pretrained_cfg=pretrained_cfg,
)
else:
load_pretrained(
model,
pretrained_cfg=pretrained_cfg,
num_classes=num_classes_pretrained,
in_chans=kwargs.get('in_chans', 3),
filter_fn=pretrained_filter_fn,
strict=pretrained_strict,
)
# Wrap the model in a feature extraction module if enabled
if features:
feature_cls = FeatureListNet
if 'feature_cls' in feature_cfg:
feature_cls = feature_cfg.pop('feature_cls')
if isinstance(feature_cls, str):
feature_cls = feature_cls.lower()
if 'hook' in feature_cls:
feature_cls = FeatureHookNet
elif feature_cls == 'fx':
feature_cls = FeatureGraphNet
else:
assert False, f'Unknown feature class {feature_cls}'
model = feature_cls(model, **feature_cfg)
model.pretrained_cfg = pretrained_cfg_for_features(pretrained_cfg) # add back default_cfg
model.default_cfg = model.pretrained_cfg # alias for backwards compat
return model
def model_parameters(model, exclude_head=False):
if exclude_head:
# FIXME this a bit of a quick and dirty hack to skip classifier head params based on ordering
return [p for p in model.parameters()][:-2]
else:
return model.parameters()
def named_apply(fn: Callable, module: nn.Module, name='', depth_first=True, include_root=False) -> nn.Module:
if not depth_first and include_root:
fn(module=module, name=name)
for child_name, child_module in module.named_children():
child_name = '.'.join((name, child_name)) if name else child_name
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
if depth_first and include_root:
fn(module=module, name=name)
return module
def named_modules(module: nn.Module, name='', depth_first=True, include_root=False):
if not depth_first and include_root:
yield name, module
for child_name, child_module in module.named_children():
child_name = '.'.join((name, child_name)) if name else child_name
yield from named_modules(
module=child_module, name=child_name, depth_first=depth_first, include_root=True)
if depth_first and include_root:
yield name, module
def named_modules_with_params(module: nn.Module, name='', depth_first=True, include_root=False):
if module._parameters and not depth_first and include_root:
yield name, module
for child_name, child_module in module.named_children():
child_name = '.'.join((name, child_name)) if name else child_name
yield from named_modules_with_params(
module=child_module, name=child_name, depth_first=depth_first, include_root=True)
if module._parameters and depth_first and include_root:
yield name, module
MATCH_PREV_GROUP = (99999,)
def group_with_matcher(
named_objects,
group_matcher: Union[Dict, Callable],
output_values: bool = False,
reverse: bool = False
):
if isinstance(group_matcher, dict):
# dictionary matcher contains a dict of raw-string regex expr that must be compiled
compiled = []
for group_ordinal, (group_name, mspec) in enumerate(group_matcher.items()):
if mspec is None:
continue
# map all matching specifications into 3-tuple (compiled re, prefix, suffix)
if isinstance(mspec, (tuple, list)):
# multi-entry match specifications require each sub-spec to be a 2-tuple (re, suffix)
for sspec in mspec:
compiled += [(re.compile(sspec[0]), (group_ordinal,), sspec[1])]
else:
compiled += [(re.compile(mspec), (group_ordinal,), None)]
group_matcher = compiled
def _get_grouping(name):
if isinstance(group_matcher, (list, tuple)):
for match_fn, prefix, suffix in group_matcher:
r = match_fn.match(name)
if r:
parts = (prefix, r.groups(), suffix)
# map all tuple elem to int for numeric sort, filter out None entries
return tuple(map(float, chain.from_iterable(filter(None, parts))))
return float('inf'), # un-matched layers (neck, head) mapped to largest ordinal
else:
ord = group_matcher(name)
if not isinstance(ord, collections.abc.Iterable):
return ord,
return tuple(ord)
# map layers into groups via ordinals (ints or tuples of ints) from matcher
grouping = defaultdict(list)
for k, v in named_objects:
grouping[_get_grouping(k)].append(v if output_values else k)
# remap to integers
layer_id_to_param = defaultdict(list)
lid = -1
for k in sorted(filter(lambda x: x is not None, grouping.keys())):
if lid < 0 or k[-1] != MATCH_PREV_GROUP[0]:
lid += 1
layer_id_to_param[lid].extend(grouping[k])
if reverse:
assert not output_values, "reverse mapping only sensible for name output"
# output reverse mapping
param_to_layer_id = {}
for lid, lm in layer_id_to_param.items():
for n in lm:
param_to_layer_id[n] = lid
return param_to_layer_id
return layer_id_to_param
def group_parameters(
module: nn.Module,
group_matcher,
output_values=False,
reverse=False,
):
return group_with_matcher(
module.named_parameters(), group_matcher, output_values=output_values, reverse=reverse)
def group_modules(
module: nn.Module,
group_matcher,
output_values=False,
reverse=False,
):
return group_with_matcher(
named_modules_with_params(module), group_matcher, output_values=output_values, reverse=reverse)
def checkpoint_seq(
functions,
x,
every=1,
flatten=False,
skip_last=False,
preserve_rng_state=True
):
r"""A helper function for checkpointing sequential models.
Sequential models execute a list of modules/functions in order
(sequentially). Therefore, we can divide such a sequence into segments
and checkpoint each segment. All segments except run in :func:`torch.no_grad`
manner, i.e., not storing the intermediate activations. The inputs of each
checkpointed segment will be saved for re-running the segment in the backward pass.
See :func:`~torch.utils.checkpoint.checkpoint` on how checkpointing works.
.. warning::
Checkpointing currently only supports :func:`torch.autograd.backward`
and only if its `inputs` argument is not passed. :func:`torch.autograd.grad`
is not supported.
.. warning:
At least one of the inputs needs to have :code:`requires_grad=True` if
grads are needed for model inputs, otherwise the checkpointed part of the
model won't have gradients.
Args:
functions: A :class:`torch.nn.Sequential` or the list of modules or functions to run sequentially.
x: A Tensor that is input to :attr:`functions`
every: checkpoint every-n functions (default: 1)
flatten (bool): flatten nn.Sequential of nn.Sequentials
skip_last (bool): skip checkpointing the last function in the sequence if True
preserve_rng_state (bool, optional, default=True): Omit stashing and restoring
the RNG state during each checkpoint.
Returns:
Output of running :attr:`functions` sequentially on :attr:`*inputs`
Example:
>>> model = nn.Sequential(...)
>>> input_var = checkpoint_seq(model, input_var, every=2)
"""
def run_function(start, end, functions):
def forward(_x):
for j in range(start, end + 1):
_x = functions[j](_x)
return _x
return forward
if isinstance(functions, torch.nn.Sequential):
functions = functions.children()
if flatten:
functions = chain.from_iterable(functions)
if not isinstance(functions, (tuple, list)):
functions = tuple(functions)
num_checkpointed = len(functions)
if skip_last:
num_checkpointed -= 1
end = -1
for start in range(0, num_checkpointed, every):
end = min(start + every - 1, num_checkpointed - 1)
x = checkpoint(run_function(start, end, functions), x, preserve_rng_state=preserve_rng_state)
if skip_last:
return run_function(end + 1, len(functions) - 1, functions)(x)
return x
def flatten_modules(named_modules, depth=1, prefix='', module_types='sequential'):
prefix_is_tuple = isinstance(prefix, tuple)
if isinstance(module_types, str):
if module_types == 'container':
module_types = (nn.Sequential, nn.ModuleList, nn.ModuleDict)
else:
module_types = (nn.Sequential,)
for name, module in named_modules:
if depth and isinstance(module, module_types):
yield from flatten_modules(
module.named_children(),
depth - 1,
prefix=(name,) if prefix_is_tuple else name,
module_types=module_types,
)
else:
if prefix_is_tuple:
name = prefix + (name,)
yield name, module
else:
if prefix:
name = '.'.join([prefix, name])
yield name, module