|
|
|
""" LeViT
|
|
|
|
|
|
|
|
Paper: `LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference`
|
|
|
|
- https://arxiv.org/abs/2104.01136
|
|
|
|
|
|
|
|
@article{graham2021levit,
|
|
|
|
title={LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference},
|
|
|
|
author={Benjamin Graham and Alaaeldin El-Nouby and Hugo Touvron and Pierre Stock and Armand Joulin and Herv\'e J\'egou and Matthijs Douze},
|
|
|
|
journal={arXiv preprint arXiv:22104.01136},
|
|
|
|
year={2021}
|
|
|
|
}
|
|
|
|
|
|
|
|
Adapted from official impl at https://github.com/facebookresearch/LeViT, original copyright bellow.
|
|
|
|
|
|
|
|
This version combines both conv/linear models and fixes torchscript compatibility.
|
|
|
|
|
|
|
|
Modifications by/coyright Copyright 2021 Ross Wightman
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Copyright (c) 2015-present, Facebook, Inc.
|
|
|
|
# All rights reserved.
|
|
|
|
|
|
|
|
# Modified from
|
|
|
|
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
|
|
|
# Copyright 2020 Ross Wightman, Apache-2.0 License
|
|
|
|
import itertools
|
|
|
|
from copy import deepcopy
|
|
|
|
from functools import partial
|
|
|
|
from typing import Dict
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN
|
|
|
|
from .helpers import build_model_with_cfg, overlay_external_default_cfg
|
|
|
|
from .layers import to_ntuple, get_act_layer
|
|
|
|
from .vision_transformer import trunc_normal_
|
|
|
|
from .registry import register_model
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url,
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
|
|
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'first_conv': 'patch_embed.0.c', 'classifier': ('head.l', 'head_dist.l'),
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = dict(
|
|
|
|
levit_128s=_cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/LeViT/LeViT-128S-96703c44.pth'
|
|
|
|
),
|
|
|
|
levit_128=_cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/LeViT/LeViT-128-b88c2750.pth'
|
|
|
|
),
|
|
|
|
levit_192=_cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/LeViT/LeViT-192-92712e41.pth'
|
|
|
|
),
|
|
|
|
levit_256=_cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/LeViT/LeViT-256-13b5763e.pth'
|
|
|
|
),
|
|
|
|
levit_384=_cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/LeViT/LeViT-384-9bdaf2e2.pth'
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
model_cfgs = dict(
|
|
|
|
levit_128s=dict(
|
|
|
|
embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 6, 8), depth=(2, 3, 4)),
|
|
|
|
levit_128=dict(
|
|
|
|
embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 8, 12), depth=(4, 4, 4)),
|
|
|
|
levit_192=dict(
|
|
|
|
embed_dim=(192, 288, 384), key_dim=32, num_heads=(3, 5, 6), depth=(4, 4, 4)),
|
|
|
|
levit_256=dict(
|
|
|
|
embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 4, 4)),
|
|
|
|
levit_384=dict(
|
|
|
|
embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4)),
|
|
|
|
)
|
|
|
|
|
|
|
|
__all__ = ['Levit']
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def levit_128s(pretrained=False, use_conv=False, **kwargs):
|
|
|
|
return create_levit(
|
|
|
|
'levit_128s', pretrained=pretrained, use_conv=use_conv, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def levit_128(pretrained=False, use_conv=False, **kwargs):
|
|
|
|
return create_levit(
|
|
|
|
'levit_128', pretrained=pretrained, use_conv=use_conv, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def levit_192(pretrained=False, use_conv=False, **kwargs):
|
|
|
|
return create_levit(
|
|
|
|
'levit_192', pretrained=pretrained, use_conv=use_conv, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def levit_256(pretrained=False, use_conv=False, **kwargs):
|
|
|
|
return create_levit(
|
|
|
|
'levit_256', pretrained=pretrained, use_conv=use_conv, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def levit_384(pretrained=False, use_conv=False, **kwargs):
|
|
|
|
return create_levit(
|
|
|
|
'levit_384', pretrained=pretrained, use_conv=use_conv, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
class ConvNorm(nn.Sequential):
|
|
|
|
def __init__(
|
|
|
|
self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1, resolution=-10000):
|
|
|
|
super().__init__()
|
|
|
|
self.add_module('c', nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False))
|
|
|
|
bn = nn.BatchNorm2d(b)
|
|
|
|
nn.init.constant_(bn.weight, bn_weight_init)
|
|
|
|
nn.init.constant_(bn.bias, 0)
|
|
|
|
self.add_module('bn', bn)
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def fuse(self):
|
|
|
|
c, bn = self._modules.values()
|
|
|
|
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
|
|
|
w = c.weight * w[:, None, None, None]
|
|
|
|
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5
|
|
|
|
m = nn.Conv2d(
|
|
|
|
w.size(1), w.size(0), w.shape[2:], stride=self.c.stride,
|
|
|
|
padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups)
|
|
|
|
m.weight.data.copy_(w)
|
|
|
|
m.bias.data.copy_(b)
|
|
|
|
return m
|
|
|
|
|
|
|
|
|
|
|
|
class LinearNorm(nn.Sequential):
|
|
|
|
def __init__(self, a, b, bn_weight_init=1, resolution=-100000):
|
|
|
|
super().__init__()
|
|
|
|
self.add_module('c', nn.Linear(a, b, bias=False))
|
|
|
|
bn = nn.BatchNorm1d(b)
|
|
|
|
nn.init.constant_(bn.weight, bn_weight_init)
|
|
|
|
nn.init.constant_(bn.bias, 0)
|
|
|
|
self.add_module('bn', bn)
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def fuse(self):
|
|
|
|
l, bn = self._modules.values()
|
|
|
|
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
|
|
|
w = l.weight * w[:, None]
|
|
|
|
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5
|
|
|
|
m = nn.Linear(w.size(1), w.size(0))
|
|
|
|
m.weight.data.copy_(w)
|
|
|
|
m.bias.data.copy_(b)
|
|
|
|
return m
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.c(x)
|
|
|
|
return self.bn(x.flatten(0, 1)).reshape_as(x)
|
|
|
|
|
|
|
|
|
|
|
|
class NormLinear(nn.Sequential):
|
|
|
|
def __init__(self, a, b, bias=True, std=0.02):
|
|
|
|
super().__init__()
|
|
|
|
self.add_module('bn', nn.BatchNorm1d(a))
|
|
|
|
l = nn.Linear(a, b, bias=bias)
|
|
|
|
trunc_normal_(l.weight, std=std)
|
|
|
|
if bias:
|
|
|
|
nn.init.constant_(l.bias, 0)
|
|
|
|
self.add_module('l', l)
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def fuse(self):
|
|
|
|
bn, l = self._modules.values()
|
|
|
|
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
|
|
|
b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5
|
|
|
|
w = l.weight * w[None, :]
|
|
|
|
if l.bias is None:
|
|
|
|
b = b @ self.l.weight.T
|
|
|
|
else:
|
|
|
|
b = (l.weight @ b[:, None]).view(-1) + self.l.bias
|
|
|
|
m = nn.Linear(w.size(1), w.size(0))
|
|
|
|
m.weight.data.copy_(w)
|
|
|
|
m.bias.data.copy_(b)
|
|
|
|
return m
|
|
|
|
|
|
|
|
|
|
|
|
def stem_b16(in_chs, out_chs, activation, resolution=224):
|
|
|
|
return nn.Sequential(
|
|
|
|
ConvNorm(in_chs, out_chs // 8, 3, 2, 1, resolution=resolution),
|
|
|
|
activation(),
|
|
|
|
ConvNorm(out_chs // 8, out_chs // 4, 3, 2, 1, resolution=resolution // 2),
|
|
|
|
activation(),
|
|
|
|
ConvNorm(out_chs // 4, out_chs // 2, 3, 2, 1, resolution=resolution // 4),
|
|
|
|
activation(),
|
|
|
|
ConvNorm(out_chs // 2, out_chs, 3, 2, 1, resolution=resolution // 8))
|
|
|
|
|
|
|
|
|
|
|
|
class Residual(nn.Module):
|
|
|
|
def __init__(self, m, drop):
|
|
|
|
super().__init__()
|
|
|
|
self.m = m
|
|
|
|
self.drop = drop
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
if self.training and self.drop > 0:
|
|
|
|
return x + self.m(x) * torch.rand(
|
|
|
|
x.size(0), 1, 1, device=x.device).ge_(self.drop).div(1 - self.drop).detach()
|
|
|
|
else:
|
|
|
|
return x + self.m(x)
|
|
|
|
|
|
|
|
|
|
|
|
class Subsample(nn.Module):
|
|
|
|
def __init__(self, stride, resolution):
|
|
|
|
super().__init__()
|
|
|
|
self.stride = stride
|
|
|
|
self.resolution = resolution
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
B, N, C = x.shape
|
|
|
|
x = x.view(B, self.resolution, self.resolution, C)[:, ::self.stride, ::self.stride]
|
|
|
|
return x.reshape(B, -1, C)
|
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
ab: Dict[str, torch.Tensor]
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, dim, key_dim, num_heads=8, attn_ratio=4, act_layer=None, resolution=14, use_conv=False):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.num_heads = num_heads
|
|
|
|
self.scale = key_dim ** -0.5
|
|
|
|
self.key_dim = key_dim
|
|
|
|
self.nh_kd = nh_kd = key_dim * num_heads
|
|
|
|
self.d = int(attn_ratio * key_dim)
|
|
|
|
self.dh = int(attn_ratio * key_dim) * num_heads
|
|
|
|
self.attn_ratio = attn_ratio
|
|
|
|
self.use_conv = use_conv
|
|
|
|
ln_layer = ConvNorm if self.use_conv else LinearNorm
|
|
|
|
h = self.dh + nh_kd * 2
|
|
|
|
self.qkv = ln_layer(dim, h, resolution=resolution)
|
|
|
|
self.proj = nn.Sequential(
|
|
|
|
act_layer(),
|
|
|
|
ln_layer(self.dh, dim, bn_weight_init=0, resolution=resolution))
|
|
|
|
|
|
|
|
points = list(itertools.product(range(resolution), range(resolution)))
|
|
|
|
N = len(points)
|
|
|
|
attention_offsets = {}
|
|
|
|
idxs = []
|
|
|
|
for p1 in points:
|
|
|
|
for p2 in points:
|
|
|
|
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
|
|
|
|
if offset not in attention_offsets:
|
|
|
|
attention_offsets[offset] = len(attention_offsets)
|
|
|
|
idxs.append(attention_offsets[offset])
|
|
|
|
self.attention_biases = nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
|
|
|
|
self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N))
|
|
|
|
self.ab = {}
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def train(self, mode=True):
|
|
|
|
super().train(mode)
|
|
|
|
if mode and self.ab:
|
|
|
|
self.ab = {} # clear ab cache
|
|
|
|
|
|
|
|
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
|
|
|
|
if self.training:
|
|
|
|
return self.attention_biases[:, self.attention_bias_idxs]
|
|
|
|
else:
|
|
|
|
device_key = str(device)
|
|
|
|
if device_key not in self.ab:
|
|
|
|
self.ab[device_key] = self.attention_biases[:, self.attention_bias_idxs]
|
|
|
|
return self.ab[device_key]
|
|
|
|
|
|
|
|
def forward(self, x): # x (B,C,H,W)
|
|
|
|
if self.use_conv:
|
|
|
|
B, C, H, W = x.shape
|
|
|
|
q, k, v = self.qkv(x).view(B, self.num_heads, -1, H * W).split([self.key_dim, self.key_dim, self.d], dim=2)
|
|
|
|
|
|
|
|
attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device)
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
|
|
|
|
|
|
x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W)
|
|
|
|
else:
|
|
|
|
B, N, C = x.shape
|
|
|
|
qkv = self.qkv(x)
|
|
|
|
q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.d], dim=3)
|
|
|
|
q = q.permute(0, 2, 1, 3)
|
|
|
|
k = k.permute(0, 2, 1, 3)
|
|
|
|
v = v.permute(0, 2, 1, 3)
|
|
|
|
|
|
|
|
attn = torch.matmul(q, k.transpose(-2, -1)) * self.scale + self.get_attention_biases(x.device)
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
|
|
|
|
|
|
x = torch.matmul(attn, v).transpose(1, 2).reshape(B, N, self.dh)
|
|
|
|
x = self.proj(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class AttentionSubsample(nn.Module):
|
|
|
|
ab: Dict[str, torch.Tensor]
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, in_dim, out_dim, key_dim, num_heads=8, attn_ratio=2,
|
|
|
|
act_layer=None, stride=2, resolution=14, resolution_=7, use_conv=False):
|
|
|
|
super().__init__()
|
|
|
|
self.num_heads = num_heads
|
|
|
|
self.scale = key_dim ** -0.5
|
|
|
|
self.key_dim = key_dim
|
|
|
|
self.nh_kd = nh_kd = key_dim * num_heads
|
|
|
|
self.d = int(attn_ratio * key_dim)
|
|
|
|
self.dh = self.d * self.num_heads
|
|
|
|
self.attn_ratio = attn_ratio
|
|
|
|
self.resolution_ = resolution_
|
|
|
|
self.resolution_2 = resolution_ ** 2
|
|
|
|
self.use_conv = use_conv
|
|
|
|
if self.use_conv:
|
|
|
|
ln_layer = ConvNorm
|
|
|
|
sub_layer = partial(nn.AvgPool2d, kernel_size=1, padding=0)
|
|
|
|
else:
|
|
|
|
ln_layer = LinearNorm
|
|
|
|
sub_layer = partial(Subsample, resolution=resolution)
|
|
|
|
|
|
|
|
h = self.dh + nh_kd
|
|
|
|
self.kv = ln_layer(in_dim, h, resolution=resolution)
|
|
|
|
self.q = nn.Sequential(
|
|
|
|
sub_layer(stride=stride),
|
|
|
|
ln_layer(in_dim, nh_kd, resolution=resolution_))
|
|
|
|
self.proj = nn.Sequential(
|
|
|
|
act_layer(),
|
|
|
|
ln_layer(self.dh, out_dim, resolution=resolution_))
|
|
|
|
|
|
|
|
self.stride = stride
|
|
|
|
self.resolution = resolution
|
|
|
|
points = list(itertools.product(range(resolution), range(resolution)))
|
|
|
|
points_ = list(itertools.product(range(resolution_), range(resolution_)))
|
|
|
|
N = len(points)
|
|
|
|
N_ = len(points_)
|
|
|
|
attention_offsets = {}
|
|
|
|
idxs = []
|
|
|
|
for p1 in points_:
|
|
|
|
for p2 in points:
|
|
|
|
size = 1
|
|
|
|
offset = (
|
|
|
|
abs(p1[0] * stride - p2[0] + (size - 1) / 2),
|
|
|
|
abs(p1[1] * stride - p2[1] + (size - 1) / 2))
|
|
|
|
if offset not in attention_offsets:
|
|
|
|
attention_offsets[offset] = len(attention_offsets)
|
|
|
|
idxs.append(attention_offsets[offset])
|
|
|
|
self.attention_biases = nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
|
|
|
|
self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N_, N))
|
|
|
|
self.ab = {} # per-device attention_biases cache
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def train(self, mode=True):
|
|
|
|
super().train(mode)
|
|
|
|
if mode and self.ab:
|
|
|
|
self.ab = {} # clear ab cache
|
|
|
|
|
|
|
|
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
|
|
|
|
if self.training:
|
|
|
|
return self.attention_biases[:, self.attention_bias_idxs]
|
|
|
|
else:
|
|
|
|
device_key = str(device)
|
|
|
|
if device_key not in self.ab:
|
|
|
|
self.ab[device_key] = self.attention_biases[:, self.attention_bias_idxs]
|
|
|
|
return self.ab[device_key]
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
if self.use_conv:
|
|
|
|
B, C, H, W = x.shape
|
|
|
|
k, v = self.kv(x).view(B, self.num_heads, -1, H * W).split([self.key_dim, self.d], dim=2)
|
|
|
|
q = self.q(x).view(B, self.num_heads, self.key_dim, self.resolution_2)
|
|
|
|
|
|
|
|
attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device)
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
|
|
|
|
|
|
x = (v @ attn.transpose(-2, -1)).reshape(B, -1, self.resolution_, self.resolution_)
|
|
|
|
else:
|
|
|
|
B, N, C = x.shape
|
|
|
|
k, v = self.kv(x).view(B, N, self.num_heads, -1).split([self.key_dim, self.d], dim=3)
|
|
|
|
k = k.permute(0, 2, 1, 3) # BHNC
|
|
|
|
v = v.permute(0, 2, 1, 3) # BHNC
|
|
|
|
q = self.q(x).view(B, self.resolution_2, self.num_heads, self.key_dim).permute(0, 2, 1, 3)
|
|
|
|
|
|
|
|
attn = torch.matmul(q, k.transpose(-2, -1)) * self.scale + self.get_attention_biases(x.device)
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
|
|
|
|
|
|
x = torch.matmul(attn, v).transpose(1, 2).reshape(B, -1, self.dh)
|
|
|
|
x = self.proj(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class Levit(nn.Module):
|
|
|
|
""" Vision Transformer with support for patch or hybrid CNN input stage
|
|
|
|
|
|
|
|
NOTE: distillation is defaulted to True since pretrained weights use it, will cause problems
|
|
|
|
w/ train scripts that don't take tuple outputs,
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
img_size=224,
|
|
|
|
patch_size=16,
|
|
|
|
in_chans=3,
|
|
|
|
num_classes=1000,
|
|
|
|
embed_dim=(192,),
|
|
|
|
key_dim=64,
|
|
|
|
depth=(12,),
|
|
|
|
num_heads=(3,),
|
|
|
|
attn_ratio=2,
|
|
|
|
mlp_ratio=2,
|
|
|
|
hybrid_backbone=None,
|
|
|
|
down_ops=None,
|
|
|
|
act_layer='hard_swish',
|
|
|
|
attn_act_layer='hard_swish',
|
|
|
|
distillation=True,
|
|
|
|
use_conv=False,
|
|
|
|
drop_rate=0.,
|
|
|
|
drop_path_rate=0.):
|
|
|
|
super().__init__()
|
|
|
|
act_layer = get_act_layer(act_layer)
|
|
|
|
attn_act_layer = get_act_layer(attn_act_layer)
|
|
|
|
if isinstance(img_size, tuple):
|
|
|
|
# FIXME origin impl passes single img/res dim through whole hierarchy,
|
|
|
|
# not sure this model will be used enough to spend time fixing it.
|
|
|
|
assert img_size[0] == img_size[1]
|
|
|
|
img_size = img_size[0]
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.num_features = embed_dim[-1]
|
|
|
|
self.embed_dim = embed_dim
|
|
|
|
N = len(embed_dim)
|
|
|
|
assert len(depth) == len(num_heads) == N
|
|
|
|
key_dim = to_ntuple(N)(key_dim)
|
|
|
|
attn_ratio = to_ntuple(N)(attn_ratio)
|
|
|
|
mlp_ratio = to_ntuple(N)(mlp_ratio)
|
|
|
|
down_ops = down_ops or (
|
|
|
|
# ('Subsample',key_dim, num_heads, attn_ratio, mlp_ratio, stride)
|
|
|
|
('Subsample', key_dim[0], embed_dim[0] // key_dim[0], 4, 2, 2),
|
|
|
|
('Subsample', key_dim[0], embed_dim[1] // key_dim[1], 4, 2, 2),
|
|
|
|
('',)
|
|
|
|
)
|
|
|
|
self.distillation = distillation
|
|
|
|
self.use_conv = use_conv
|
|
|
|
ln_layer = ConvNorm if self.use_conv else LinearNorm
|
|
|
|
|
|
|
|
self.patch_embed = hybrid_backbone or stem_b16(in_chans, embed_dim[0], activation=act_layer)
|
|
|
|
|
|
|
|
self.blocks = []
|
|
|
|
resolution = img_size // patch_size
|
|
|
|
for i, (ed, kd, dpth, nh, ar, mr, do) in enumerate(
|
|
|
|
zip(embed_dim, key_dim, depth, num_heads, attn_ratio, mlp_ratio, down_ops)):
|
|
|
|
for _ in range(dpth):
|
|
|
|
self.blocks.append(
|
|
|
|
Residual(
|
|
|
|
Attention(
|
|
|
|
ed, kd, nh, attn_ratio=ar, act_layer=attn_act_layer,
|
|
|
|
resolution=resolution, use_conv=use_conv),
|
|
|
|
drop_path_rate))
|
|
|
|
if mr > 0:
|
|
|
|
h = int(ed * mr)
|
|
|
|
self.blocks.append(
|
|
|
|
Residual(nn.Sequential(
|
|
|
|
ln_layer(ed, h, resolution=resolution),
|
|
|
|
act_layer(),
|
|
|
|
ln_layer(h, ed, bn_weight_init=0, resolution=resolution),
|
|
|
|
), drop_path_rate))
|
|
|
|
if do[0] == 'Subsample':
|
|
|
|
# ('Subsample',key_dim, num_heads, attn_ratio, mlp_ratio, stride)
|
|
|
|
resolution_ = (resolution - 1) // do[5] + 1
|
|
|
|
self.blocks.append(
|
|
|
|
AttentionSubsample(
|
|
|
|
*embed_dim[i:i + 2], key_dim=do[1], num_heads=do[2],
|
|
|
|
attn_ratio=do[3], act_layer=attn_act_layer, stride=do[5],
|
|
|
|
resolution=resolution, resolution_=resolution_, use_conv=use_conv))
|
|
|
|
resolution = resolution_
|
|
|
|
if do[4] > 0: # mlp_ratio
|
|
|
|
h = int(embed_dim[i + 1] * do[4])
|
|
|
|
self.blocks.append(
|
|
|
|
Residual(nn.Sequential(
|
|
|
|
ln_layer(embed_dim[i + 1], h, resolution=resolution),
|
|
|
|
act_layer(),
|
|
|
|
ln_layer(h, embed_dim[i + 1], bn_weight_init=0, resolution=resolution),
|
|
|
|
), drop_path_rate))
|
|
|
|
self.blocks = nn.Sequential(*self.blocks)
|
|
|
|
|
|
|
|
# Classifier head
|
|
|
|
self.head = NormLinear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
self.head_dist = None
|
|
|
|
if distillation:
|
|
|
|
self.head_dist = NormLinear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def no_weight_decay(self):
|
|
|
|
return {x for x in self.state_dict().keys() if 'attention_biases' in x}
|
|
|
|
|
|
|
|
def get_classifier(self):
|
|
|
|
if self.head_dist is None:
|
|
|
|
return self.head
|
|
|
|
else:
|
|
|
|
return self.head, self.head_dist
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool='', distillation=None):
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.head = NormLinear(self.embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
if distillation is not None:
|
|
|
|
self.distillation = distillation
|
|
|
|
if self.distillation:
|
|
|
|
self.head_dist = NormLinear(self.embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
else:
|
|
|
|
self.head_dist = None
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
x = self.patch_embed(x)
|
|
|
|
if not self.use_conv:
|
|
|
|
x = x.flatten(2).transpose(1, 2)
|
|
|
|
x = self.blocks(x)
|
|
|
|
x = x.mean((-2, -1)) if self.use_conv else x.mean(1)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
if self.head_dist is not None:
|
|
|
|
x, x_dist = self.head(x), self.head_dist(x)
|
|
|
|
if self.training and not torch.jit.is_scripting():
|
|
|
|
return x, x_dist
|
|
|
|
else:
|
|
|
|
# during inference, return the average of both classifier predictions
|
|
|
|
return (x + x_dist) / 2
|
|
|
|
else:
|
|
|
|
x = self.head(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model):
|
|
|
|
if 'model' in state_dict:
|
|
|
|
# For deit models
|
|
|
|
state_dict = state_dict['model']
|
|
|
|
D = model.state_dict()
|
|
|
|
for k in state_dict.keys():
|
|
|
|
if k in D and D[k].ndim == 4 and state_dict[k].ndim == 2:
|
|
|
|
state_dict[k] = state_dict[k][:, :, None, None]
|
|
|
|
return state_dict
|
|
|
|
|
|
|
|
|
|
|
|
def create_levit(variant, pretrained=False, default_cfg=None, fuse=False, **kwargs):
|
|
|
|
if kwargs.get('features_only', None):
|
|
|
|
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
|
|
|
|
|
|
|
model_cfg = dict(**model_cfgs[variant], **kwargs)
|
|
|
|
model = build_model_with_cfg(
|
|
|
|
Levit, variant, pretrained,
|
|
|
|
default_cfg=default_cfgs[variant],
|
|
|
|
pretrained_filter_fn=checkpoint_filter_fn,
|
|
|
|
**model_cfg)
|
|
|
|
#if fuse:
|
|
|
|
# utils.replace_batchnorm(model)
|
|
|
|
return model
|
|
|
|
|