You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
49 lines
1.6 KiB
49 lines
1.6 KiB
6 years ago
|
import math
|
||
|
import torch
|
||
|
|
||
|
from .scheduler import Scheduler
|
||
|
|
||
|
|
||
|
class StepLRScheduler(Scheduler):
|
||
|
"""
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
optimizer: torch.optim.Optimizer,
|
||
|
decay_epochs: int,
|
||
|
decay_rate: float = 1.,
|
||
|
warmup_updates=0,
|
||
|
warmup_lr_init=0,
|
||
|
initialize=True) -> None:
|
||
|
super().__init__(optimizer, param_group_field="lr", initialize=initialize)
|
||
|
|
||
|
self.decay_epochs = decay_epochs
|
||
|
self.decay_rate = decay_rate
|
||
|
self.warmup_updates = warmup_updates
|
||
|
self.warmup_lr_init = warmup_lr_init
|
||
|
|
||
|
if self.warmup_updates:
|
||
|
self.warmup_active = warmup_updates > 0 # this state updates with num_updates
|
||
|
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_updates for v in self.base_values]
|
||
|
super().update_groups(self.warmup_lr_init)
|
||
|
else:
|
||
|
self.warmup_steps = [1 for _ in self.base_values]
|
||
|
|
||
|
def get_epoch_values(self, epoch: int):
|
||
|
if not self.warmup_active:
|
||
|
lrs = [v * (self.decay_rate ** ((epoch + 1) // self.decay_epochs))
|
||
|
for v in self.base_values]
|
||
|
else:
|
||
|
lrs = None # no epoch updates while warming up
|
||
|
return lrs
|
||
|
|
||
|
def get_update_values(self, num_updates: int):
|
||
|
if num_updates < self.warmup_updates:
|
||
|
lrs = [self.warmup_lr_init + num_updates * s for s in self.warmup_steps]
|
||
|
else:
|
||
|
self.warmup_active = False # warmup cancelled by first update past warmup_update count
|
||
|
lrs = None # no change on update afte warmup stage
|
||
|
return lrs
|
||
|
|
||
|
|