# Dual Path Network (DPN)
A **Dual Path Network (DPN)** is a convolutional neural network which presents a new topology of connection paths internally. The intuition is that [ResNets](https://paperswithcode.com/method/resnet) enables feature re-usage while DenseNet enables new feature exploration, and both are important for learning good representations. To enjoy the benefits from both path topologies, Dual Path Networks share common features while maintaining the flexibility to explore new features through dual path architectures.
The principal building block is an [DPN Block](https://paperswithcode.com/method/dpn-block).
## How do I use this model on an image?
To load a pretrained model:
```py
>>> import timm
>>> model = timm.create_model('dpn107', pretrained=True)
>>> model.eval()
```
To load and preprocess the image:
```py
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform
>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)
>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```py
>>> import torch
>>> with torch.no_grad():
... out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
... categories = [s.strip() for s in f.readlines()]
>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
... print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
Replace the model name with the variant you want to use, e.g. `dpn107`. You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```py
>>> model = timm.create_model('dpn107', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
## Citation
```BibTeX
@misc{chen2017dual,
title={Dual Path Networks},
author={Yunpeng Chen and Jianan Li and Huaxin Xiao and Xiaojie Jin and Shuicheng Yan and Jiashi Feng},
year={2017},
eprint={1707.01629},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Type: model-index
Collections:
- Name: DPN
Paper:
Title: Dual Path Networks
URL: https://paperswithcode.com/paper/dual-path-networks
Models:
- Name: dpn107
In Collection: DPN
Metadata:
FLOPs: 23524280296
Parameters: 86920000
File Size: 348612331
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 40x K80 GPUs
ID: dpn107
LR: 0.316
Layers: 107
Crop Pct: '0.875'
Batch Size: 1280
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L310
Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn107_extra-1ac7121e2.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.16%
Top 5 Accuracy: 94.91%
- Name: dpn131
In Collection: DPN
Metadata:
FLOPs: 20586274792
Parameters: 79250000
File Size: 318016207
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 40x K80 GPUs
ID: dpn131
LR: 0.316
Layers: 131
Crop Pct: '0.875'
Batch Size: 960
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L302
Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn131-71dfe43e0.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.83%
Top 5 Accuracy: 94.71%
- Name: dpn68
In Collection: DPN
Metadata:
FLOPs: 2990567880
Parameters: 12610000
File Size: 50761994
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 40x K80 GPUs
ID: dpn68
LR: 0.316
Layers: 68
Crop Pct: '0.875'
Batch Size: 1280
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L270
Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn68-66bebafa7.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 76.31%
Top 5 Accuracy: 92.97%
- Name: dpn68b
In Collection: DPN
Metadata:
FLOPs: 2990567880
Parameters: 12610000
File Size: 50781025
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 40x K80 GPUs
ID: dpn68b
LR: 0.316
Layers: 68
Crop Pct: '0.875'
Batch Size: 1280
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L278
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dpn68b_ra-a31ca160.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.21%
Top 5 Accuracy: 94.42%
- Name: dpn92
In Collection: DPN
Metadata:
FLOPs: 8357659624
Parameters: 37670000
File Size: 151248422
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 40x K80 GPUs
ID: dpn92
LR: 0.316
Layers: 92
Crop Pct: '0.875'
Batch Size: 1280
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L286
Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn92_extra-b040e4a9b.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.99%
Top 5 Accuracy: 94.84%
- Name: dpn98
In Collection: DPN
Metadata:
FLOPs: 15003675112
Parameters: 61570000
File Size: 247021307
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 40x K80 GPUs
ID: dpn98
LR: 0.4
Layers: 98
Crop Pct: '0.875'
Batch Size: 1280
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L294
Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn98-5b90dec4d.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.65%
Top 5 Accuracy: 94.61%
-->