You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
86 lines
3.5 KiB
86 lines
3.5 KiB
6 years ago
|
import torch
|
||
|
from torch.optim import Optimizer
|
||
|
|
||
|
|
||
|
class Nadam(Optimizer):
|
||
|
"""Implements Nadam algorithm (a variant of Adam based on Nesterov momentum).
|
||
|
|
||
|
It has been proposed in `Incorporating Nesterov Momentum into Adam`__.
|
||
|
|
||
|
Arguments:
|
||
|
params (iterable): iterable of parameters to optimize or dicts defining
|
||
|
parameter groups
|
||
|
lr (float, optional): learning rate (default: 2e-3)
|
||
|
betas (Tuple[float, float], optional): coefficients used for computing
|
||
|
running averages of gradient and its square
|
||
|
eps (float, optional): term added to the denominator to improve
|
||
|
numerical stability (default: 1e-8)
|
||
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
||
|
schedule_decay (float, optional): momentum schedule decay (default: 4e-3)
|
||
|
|
||
|
__ http://cs229.stanford.edu/proj2015/054_report.pdf
|
||
|
__ http://www.cs.toronto.edu/~fritz/absps/momentum.pdf
|
||
|
"""
|
||
|
|
||
|
def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8,
|
||
|
weight_decay=0, schedule_decay=4e-3):
|
||
|
defaults = dict(lr=lr, betas=betas, eps=eps,
|
||
|
weight_decay=weight_decay, schedule_decay=schedule_decay)
|
||
|
super(Nadam, self).__init__(params, defaults)
|
||
|
|
||
|
def step(self, closure=None):
|
||
|
"""Performs a single optimization step.
|
||
|
|
||
|
Arguments:
|
||
|
closure (callable, optional): A closure that reevaluates the model
|
||
|
and returns the loss.
|
||
|
"""
|
||
|
loss = None
|
||
|
if closure is not None:
|
||
|
loss = closure()
|
||
|
|
||
|
for group in self.param_groups:
|
||
|
for p in group['params']:
|
||
|
if p.grad is None:
|
||
|
continue
|
||
|
grad = p.grad.data
|
||
|
state = self.state[p]
|
||
|
|
||
|
# State initialization
|
||
|
if len(state) == 0:
|
||
|
state['step'] = 0
|
||
|
state['m_schedule'] = 1.
|
||
|
state['exp_avg'] = grad.new().resize_as_(grad).zero_()
|
||
|
state['exp_avg_sq'] = grad.new().resize_as_(grad).zero_()
|
||
|
|
||
|
# Warming momentum schedule
|
||
|
m_schedule = state['m_schedule']
|
||
|
schedule_decay = group['schedule_decay']
|
||
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||
|
beta1, beta2 = group['betas']
|
||
|
eps = group['eps']
|
||
|
state['step'] += 1
|
||
|
t = state['step']
|
||
|
|
||
|
if group['weight_decay'] != 0:
|
||
|
grad = grad.add(group['weight_decay'], p.data)
|
||
|
|
||
|
momentum_cache_t = beta1 * \
|
||
|
(1. - 0.5 * (0.96 ** (t * schedule_decay)))
|
||
|
momentum_cache_t_1 = beta1 * \
|
||
|
(1. - 0.5 * (0.96 ** ((t + 1) * schedule_decay)))
|
||
|
m_schedule_new = m_schedule * momentum_cache_t
|
||
|
m_schedule_next = m_schedule * momentum_cache_t * momentum_cache_t_1
|
||
|
state['m_schedule'] = m_schedule_new
|
||
|
|
||
|
# Decay the first and second moment running average coefficient
|
||
|
exp_avg.mul_(beta1).add_(1. - beta1, grad)
|
||
|
exp_avg_sq.mul_(beta2).addcmul_(1. - beta2, grad, grad)
|
||
|
exp_avg_sq_prime = exp_avg_sq / (1. - beta2 ** t)
|
||
|
denom = exp_avg_sq_prime.sqrt_().add_(eps)
|
||
|
|
||
|
p.data.addcdiv_(-group['lr'] * (1. - momentum_cache_t) / (1. - m_schedule_new), grad, denom)
|
||
|
p.data.addcdiv_(-group['lr'] * momentum_cache_t_1 / (1. - m_schedule_next), exp_avg, denom)
|
||
|
|
||
|
return loss
|