|
|
|
"""Pytorch Densenet implementation w/ tweaks
|
|
|
|
This file is a copy of https://github.com/pytorch/vision 'densenet.py' (BSD-3-Clause) with
|
|
|
|
fixed kwargs passthrough and addition of dynamic global avg/max pool.
|
|
|
|
"""
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
|
|
|
from models.helpers import load_pretrained
|
|
|
|
from models.adaptive_avgmax_pool import *
|
|
|
|
from data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
import re
|
|
|
|
|
|
|
|
__all__ = ['DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161']
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url=''):
|
|
|
|
return {
|
|
|
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 244), 'pool_size': (7, 7),
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'first_conv': 'features.conv0', 'classifier': 'classifier',
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
'densenet121': _cfg(url='https://download.pytorch.org/models/densenet121-a639ec97.pth'),
|
|
|
|
'densenet169': _cfg(url='https://download.pytorch.org/models/densenet169-b2777c0a.pth'),
|
|
|
|
'densenet201': _cfg(url='https://download.pytorch.org/models/densenet201-c1103571.pth'),
|
|
|
|
'densenet161': _cfg(url='https://download.pytorch.org/models/densenet161-8d451a50.pth'),
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def _filter_pretrained(state_dict):
|
|
|
|
pattern = re.compile(
|
|
|
|
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
|
|
|
|
|
|
|
|
for key in list(state_dict.keys()):
|
|
|
|
res = pattern.match(key)
|
|
|
|
if res:
|
|
|
|
new_key = res.group(1) + res.group(2)
|
|
|
|
state_dict[new_key] = state_dict[key]
|
|
|
|
del state_dict[key]
|
|
|
|
return state_dict
|
|
|
|
|
|
|
|
|
|
|
|
def densenet121(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
|
|
|
|
r"""Densenet-121 model from
|
|
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['densenet121']
|
|
|
|
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16),
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def densenet169(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
|
|
|
|
r"""Densenet-169 model from
|
|
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['densenet169']
|
|
|
|
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32),
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def densenet201(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
|
|
|
|
r"""Densenet-201 model from
|
|
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['densenet201']
|
|
|
|
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 48, 32),
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def densenet161(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
|
|
|
|
r"""Densenet-201 model from
|
|
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
|
|
|
|
"""
|
|
|
|
print(num_classes, in_chans, pretrained)
|
|
|
|
default_cfg = default_cfgs['densenet161']
|
|
|
|
model = DenseNet(num_init_features=96, growth_rate=48, block_config=(6, 12, 36, 24),
|
|
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
class _DenseLayer(nn.Sequential):
|
|
|
|
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
|
|
|
|
super(_DenseLayer, self).__init__()
|
|
|
|
self.add_module('norm1', nn.BatchNorm2d(num_input_features)),
|
|
|
|
self.add_module('relu1', nn.ReLU(inplace=True)),
|
|
|
|
self.add_module('conv1', nn.Conv2d(num_input_features, bn_size *
|
|
|
|
growth_rate, kernel_size=1, stride=1, bias=False)),
|
|
|
|
self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)),
|
|
|
|
self.add_module('relu2', nn.ReLU(inplace=True)),
|
|
|
|
self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
|
|
|
|
kernel_size=3, stride=1, padding=1, bias=False)),
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
new_features = super(_DenseLayer, self).forward(x)
|
|
|
|
if self.drop_rate > 0:
|
|
|
|
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
|
|
|
|
return torch.cat([x, new_features], 1)
|
|
|
|
|
|
|
|
|
|
|
|
class _DenseBlock(nn.Sequential):
|
|
|
|
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
|
|
|
|
super(_DenseBlock, self).__init__()
|
|
|
|
for i in range(num_layers):
|
|
|
|
layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
|
|
|
|
self.add_module('denselayer%d' % (i + 1), layer)
|
|
|
|
|
|
|
|
|
|
|
|
class _Transition(nn.Sequential):
|
|
|
|
def __init__(self, num_input_features, num_output_features):
|
|
|
|
super(_Transition, self).__init__()
|
|
|
|
self.add_module('norm', nn.BatchNorm2d(num_input_features))
|
|
|
|
self.add_module('relu', nn.ReLU(inplace=True))
|
|
|
|
self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
|
|
|
|
kernel_size=1, stride=1, bias=False))
|
|
|
|
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
|
|
|
|
|
|
|
|
|
|
|
|
class DenseNet(nn.Module):
|
|
|
|
r"""Densenet-BC model class, based on
|
|
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
|
|
|
|
|
|
|
|
Args:
|
|
|
|
growth_rate (int) - how many filters to add each layer (`k` in paper)
|
|
|
|
block_config (list of 4 ints) - how many layers in each pooling block
|
|
|
|
num_init_features (int) - the number of filters to learn in the first convolution layer
|
|
|
|
bn_size (int) - multiplicative factor for number of bottle neck layers
|
|
|
|
(i.e. bn_size * k features in the bottleneck layer)
|
|
|
|
drop_rate (float) - dropout rate after each dense layer
|
|
|
|
num_classes (int) - number of classification classes
|
|
|
|
"""
|
|
|
|
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
|
|
|
|
num_init_features=64, bn_size=4, drop_rate=0,
|
|
|
|
num_classes=1000, in_chans=3, global_pool='avg'):
|
|
|
|
self.global_pool = global_pool
|
|
|
|
self.num_classes = num_classes
|
|
|
|
super(DenseNet, self).__init__()
|
|
|
|
|
|
|
|
# First convolution
|
|
|
|
self.features = nn.Sequential(OrderedDict([
|
|
|
|
('conv0', nn.Conv2d(in_chans, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
|
|
|
|
('norm0', nn.BatchNorm2d(num_init_features)),
|
|
|
|
('relu0', nn.ReLU(inplace=True)),
|
|
|
|
('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
|
|
|
|
]))
|
|
|
|
|
|
|
|
# Each denseblock
|
|
|
|
num_features = num_init_features
|
|
|
|
for i, num_layers in enumerate(block_config):
|
|
|
|
block = _DenseBlock(num_layers=num_layers, num_input_features=num_features,
|
|
|
|
bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate)
|
|
|
|
self.features.add_module('denseblock%d' % (i + 1), block)
|
|
|
|
num_features = num_features + num_layers * growth_rate
|
|
|
|
if i != len(block_config) - 1:
|
|
|
|
trans = _Transition(
|
|
|
|
num_input_features=num_features, num_output_features=num_features // 2)
|
|
|
|
self.features.add_module('transition%d' % (i + 1), trans)
|
|
|
|
num_features = num_features // 2
|
|
|
|
|
|
|
|
# Final batch norm
|
|
|
|
self.features.add_module('norm5', nn.BatchNorm2d(num_features))
|
|
|
|
|
|
|
|
# Linear layer
|
|
|
|
self.classifier = nn.Linear(num_features, num_classes)
|
|
|
|
|
|
|
|
self.num_features = num_features
|
|
|
|
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.classifier
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
|
|
self.global_pool = global_pool
|
|
|
|
self.num_classes = num_classes
|
|
|
|
del self.classifier
|
|
|
|
if num_classes:
|
|
|
|
self.classifier = nn.Linear(self.num_features, num_classes)
|
|
|
|
else:
|
|
|
|
self.classifier = None
|
|
|
|
|
|
|
|
def forward_features(self, x, pool=True):
|
|
|
|
x = self.features(x)
|
|
|
|
x = F.relu(x, inplace=True)
|
|
|
|
if pool:
|
|
|
|
x = select_adaptive_pool2d(x, self.global_pool)
|
|
|
|
x = x.view(x.size(0), -1)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.classifier(self.forward_features(x, pool=True))
|
|
|
|
|