|
|
|
|
|
|
|
""" MobileNet V3
|
|
|
|
|
|
|
|
A PyTorch impl of MobileNet-V3, compatible with TF weights from official impl.
|
|
|
|
|
|
|
|
Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244
|
|
|
|
|
|
|
|
Hacked together by Ross Wightman
|
|
|
|
"""
|
|
|
|
|
|
|
|
from .efficientnet_builder import *
|
|
|
|
from .registry import register_model
|
|
|
|
from .helpers import load_pretrained
|
|
|
|
from .layers import SelectAdaptivePool2d, create_conv2d
|
|
|
|
from .layers.activations import HardSwish, hard_sigmoid
|
|
|
|
from .feature_hooks import FeatureHooks
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
|
|
|
|
|
|
|
__all__ = ['MobileNetV3']
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'first_conv': 'conv_stem', 'classifier': 'classifier',
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
'mobilenetv3_large_075': _cfg(url='', interoplation='bicubic'),
|
|
|
|
'mobilenetv3_large_100': _cfg(url='', interoplation='bicubic'),
|
|
|
|
'mobilenetv3_small_075': _cfg(url='', interoplation='bicubic'),
|
|
|
|
'mobilenetv3_small_100': _cfg(url='', interoplation='bicubic'),
|
|
|
|
'mobilenetv3_eca_large': _cfg(url='', interoplation='bicubic'),
|
|
|
|
'mobilenetv3_rw': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth',
|
|
|
|
interpolation='bicubic'),
|
|
|
|
'tf_mobilenetv3_large_075': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth',
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
'tf_mobilenetv3_large_100': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth',
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
'tf_mobilenetv3_large_minimal_100': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth',
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
'tf_mobilenetv3_small_075': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth',
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
'tf_mobilenetv3_small_100': _cfg(
|
|
|
|
url= 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth',
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
'tf_mobilenetv3_small_minimal_100': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth',
|
|
|
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
}
|
|
|
|
|
|
|
|
_DEBUG = False
|
|
|
|
|
|
|
|
|
|
|
|
class MobileNetV3(nn.Module):
|
|
|
|
""" MobiletNet-V3
|
|
|
|
|
|
|
|
Based on my EfficientNet implementation and building blocks, this model utilizes the MobileNet-v3 specific
|
|
|
|
'efficient head', where global pooling is done before the head convolution without a final batch-norm
|
|
|
|
layer before the classifier.
|
|
|
|
|
|
|
|
Paper: https://arxiv.org/abs/1905.02244
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_features=1280, head_bias=True,
|
|
|
|
channel_multiplier=1.0, pad_type='', act_layer=nn.ReLU, drop_rate=0., drop_path_rate=0.,
|
|
|
|
attn_layer=None, attn_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, global_pool='avg'):
|
|
|
|
super(MobileNetV3, self).__init__()
|
|
|
|
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.num_features = num_features
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
self._in_chs = in_chans
|
|
|
|
|
|
|
|
# Stem
|
|
|
|
stem_size = round_channels(stem_size, channel_multiplier)
|
|
|
|
self.conv_stem = create_conv2d(self._in_chs, stem_size, 3, stride=2, padding=pad_type)
|
|
|
|
self.bn1 = norm_layer(stem_size, **norm_kwargs)
|
|
|
|
self.act1 = act_layer(inplace=True)
|
|
|
|
self._in_chs = stem_size
|
|
|
|
|
|
|
|
# Middle stages (IR/ER/DS Blocks)
|
|
|
|
builder = EfficientNetBuilder(
|
|
|
|
channel_multiplier, 8, None, 32, pad_type, act_layer, attn_layer, attn_kwargs,
|
|
|
|
norm_layer, norm_kwargs, drop_path_rate, verbose=_DEBUG)
|
|
|
|
self.blocks = nn.Sequential(*builder(self._in_chs, block_args))
|
|
|
|
self.feature_info = builder.features
|
|
|
|
self._in_chs = builder.in_chs
|
|
|
|
|
|
|
|
# Head + Pooling
|
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
self.conv_head = create_conv2d(self._in_chs, self.num_features, 1, padding=pad_type, bias=head_bias)
|
|
|
|
self.act2 = act_layer(inplace=True)
|
|
|
|
|
|
|
|
# Classifier
|
|
|
|
self.classifier = nn.Linear(self.num_features * self.global_pool.feat_mult(), self.num_classes)
|
|
|
|
|
|
|
|
efficientnet_init_weights(self)
|
|
|
|
|
|
|
|
def as_sequential(self):
|
|
|
|
layers = [self.conv_stem, self.bn1, self.act1]
|
|
|
|
layers.extend(self.blocks)
|
|
|
|
layers.extend([self.global_pool, self.conv_head, self.act2])
|
|
|
|
layers.extend([nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier])
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.classifier
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.classifier = nn.Linear(
|
|
|
|
self.num_features * self.global_pool.feat_mult(), num_classes) if self.num_classes else None
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
x = self.conv_stem(x)
|
|
|
|
x = self.bn1(x)
|
|
|
|
x = self.act1(x)
|
|
|
|
x = self.blocks(x)
|
|
|
|
x = self.global_pool(x)
|
|
|
|
x = self.conv_head(x)
|
|
|
|
x = self.act2(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
x = x.flatten(1)
|
|
|
|
if self.drop_rate > 0.:
|
|
|
|
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
|
|
|
return self.classifier(x)
|
|
|
|
|
|
|
|
|
|
|
|
class MobileNetV3Features(nn.Module):
|
|
|
|
""" MobileNetV3 Feature Extractor
|
|
|
|
|
|
|
|
A work-in-progress feature extraction module for MobileNet-V3 to use as a backbone for segmentation
|
|
|
|
and object detection models.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='pre_pwl',
|
|
|
|
in_chans=3, stem_size=16, channel_multiplier=1.0, output_stride=32, pad_type='',
|
|
|
|
act_layer=nn.ReLU, drop_rate=0., drop_path_rate=0., attn_layer=None, attn_kwargs=None,
|
|
|
|
norm_layer=nn.BatchNorm2d, norm_kwargs=None):
|
|
|
|
super(MobileNetV3Features, self).__init__()
|
|
|
|
norm_kwargs = norm_kwargs or {}
|
|
|
|
|
|
|
|
# TODO only create stages needed, currently all stages are created regardless of out_indices
|
|
|
|
num_stages = max(out_indices) + 1
|
|
|
|
|
|
|
|
self.out_indices = out_indices
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
self._in_chs = in_chans
|
|
|
|
|
|
|
|
# Stem
|
|
|
|
stem_size = round_channels(stem_size, channel_multiplier)
|
|
|
|
self.conv_stem = create_conv2d(self._in_chs, stem_size, 3, stride=2, padding=pad_type)
|
|
|
|
self.bn1 = norm_layer(stem_size, **norm_kwargs)
|
|
|
|
self.act1 = act_layer(inplace=True)
|
|
|
|
self._in_chs = stem_size
|
|
|
|
|
|
|
|
# Middle stages (IR/ER/DS Blocks)
|
|
|
|
builder = EfficientNetBuilder(
|
|
|
|
channel_multiplier, 8, None, output_stride, pad_type, act_layer, attn_layer, attn_kwargs,
|
|
|
|
norm_layer, norm_kwargs, drop_path_rate, feature_location=feature_location, verbose=_DEBUG)
|
|
|
|
self.blocks = nn.Sequential(*builder(self._in_chs, block_args))
|
|
|
|
self.feature_info = builder.features # builder provides info about feature channels for each block
|
|
|
|
self._in_chs = builder.in_chs
|
|
|
|
|
|
|
|
efficientnet_init_weights(self)
|
|
|
|
if _DEBUG:
|
|
|
|
for k, v in self.feature_info.items():
|
|
|
|
print('Feature idx: {}: Name: {}, Channels: {}'.format(k, v['name'], v['num_chs']))
|
|
|
|
|
|
|
|
# Register feature extraction hooks with FeatureHooks helper
|
|
|
|
hook_type = 'forward_pre' if feature_location == 'pre_pwl' else 'forward'
|
|
|
|
hooks = [dict(name=self.feature_info[idx]['name'], type=hook_type) for idx in out_indices]
|
|
|
|
self.feature_hooks = FeatureHooks(hooks, self.named_modules())
|
|
|
|
|
|
|
|
def feature_channels(self, idx=None):
|
|
|
|
""" Feature Channel Shortcut
|
|
|
|
Returns feature channel count for each output index if idx == None. If idx is an integer, will
|
|
|
|
return feature channel count for that feature block index (independent of out_indices setting).
|
|
|
|
"""
|
|
|
|
if isinstance(idx, int):
|
|
|
|
return self.feature_info[idx]['num_chs']
|
|
|
|
return [self.feature_info[i]['num_chs'] for i in self.out_indices]
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.conv_stem(x)
|
|
|
|
x = self.bn1(x)
|
|
|
|
x = self.act1(x)
|
|
|
|
self.blocks(x)
|
|
|
|
return self.feature_hooks.get_output(x.device)
|
|
|
|
|
|
|
|
|
|
|
|
def _create_model(model_kwargs, default_cfg, pretrained=False):
|
|
|
|
if model_kwargs.pop('features_only', False):
|
|
|
|
load_strict = False
|
|
|
|
model_kwargs.pop('num_classes', 0)
|
|
|
|
model_kwargs.pop('num_features', 0)
|
|
|
|
model_kwargs.pop('head_conv', None)
|
|
|
|
model_class = MobileNetV3Features
|
|
|
|
else:
|
|
|
|
load_strict = True
|
|
|
|
model_class = MobileNetV3
|
|
|
|
|
|
|
|
model = model_class(**model_kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(
|
|
|
|
model,
|
|
|
|
default_cfg,
|
|
|
|
num_classes=model_kwargs.get('num_classes', 0),
|
|
|
|
in_chans=model_kwargs.get('in_chans', 3),
|
|
|
|
strict=load_strict)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def _gen_mobilenet_v3_rw(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
|
|
|
|
"""Creates a MobileNet-V3 model.
|
|
|
|
|
|
|
|
Ref impl: ?
|
|
|
|
Paper: https://arxiv.org/abs/1905.02244
|
|
|
|
|
|
|
|
Args:
|
|
|
|
channel_multiplier: multiplier to number of channels per layer.
|
|
|
|
"""
|
|
|
|
arch_def = [
|
|
|
|
# stage 0, 112x112 in
|
|
|
|
['ds_r1_k3_s1_e1_c16_nre_noskip'], # relu
|
|
|
|
# stage 1, 112x112 in
|
|
|
|
['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu
|
|
|
|
# stage 2, 56x56 in
|
|
|
|
['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu
|
|
|
|
# stage 3, 28x28 in
|
|
|
|
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish
|
|
|
|
# stage 4, 14x14in
|
|
|
|
['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish
|
|
|
|
# stage 5, 14x14in
|
|
|
|
['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish
|
|
|
|
# stage 6, 7x7 in
|
|
|
|
['cn_r1_k1_s1_c960'], # hard-swish
|
|
|
|
]
|
|
|
|
model_kwargs = dict(
|
|
|
|
block_args=decode_arch_def(arch_def),
|
|
|
|
head_bias=False,
|
|
|
|
channel_multiplier=channel_multiplier,
|
|
|
|
norm_kwargs=resolve_bn_args(kwargs),
|
|
|
|
act_layer=HardSwish,
|
|
|
|
attn_kwargs=dict(gate_fn=hard_sigmoid, reduce_mid=True, divisor=1),
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
model = _create_model(model_kwargs, default_cfgs[variant], pretrained)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def _gen_mobilenet_v3(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
|
|
|
|
"""Creates a MobileNet-V3 model.
|
|
|
|
|
|
|
|
Ref impl: ?
|
|
|
|
Paper: https://arxiv.org/abs/1905.02244
|
|
|
|
|
|
|
|
Args:
|
|
|
|
channel_multiplier: multiplier to number of channels per layer.
|
|
|
|
"""
|
|
|
|
if 'small' in variant:
|
|
|
|
num_features = 1024
|
|
|
|
if 'minimal' in variant:
|
|
|
|
act_layer = nn.ReLU
|
|
|
|
arch_def = [
|
|
|
|
# stage 0, 112x112 in
|
|
|
|
['ds_r1_k3_s2_e1_c16'],
|
|
|
|
# stage 1, 56x56 in
|
|
|
|
['ir_r1_k3_s2_e4.5_c24', 'ir_r1_k3_s1_e3.67_c24'],
|
|
|
|
# stage 2, 28x28 in
|
|
|
|
['ir_r1_k3_s2_e4_c40', 'ir_r2_k3_s1_e6_c40'],
|
|
|
|
# stage 3, 14x14 in
|
|
|
|
['ir_r2_k3_s1_e3_c48'],
|
|
|
|
# stage 4, 14x14in
|
|
|
|
['ir_r3_k3_s2_e6_c96'],
|
|
|
|
# stage 6, 7x7 in
|
|
|
|
['cn_r1_k1_s1_c576'],
|
|
|
|
]
|
|
|
|
else:
|
|
|
|
act_layer = HardSwish
|
|
|
|
arch_def = [
|
|
|
|
# stage 0, 112x112 in
|
|
|
|
['ds_r1_k3_s2_e1_c16_se0.25_nre'], # relu
|
|
|
|
# stage 1, 56x56 in
|
|
|
|
['ir_r1_k3_s2_e4.5_c24_nre', 'ir_r1_k3_s1_e3.67_c24_nre'], # relu
|
|
|
|
# stage 2, 28x28 in
|
|
|
|
['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r2_k5_s1_e6_c40_se0.25'], # hard-swish
|
|
|
|
# stage 3, 14x14 in
|
|
|
|
['ir_r2_k5_s1_e3_c48_se0.25'], # hard-swish
|
|
|
|
# stage 4, 14x14in
|
|
|
|
['ir_r3_k5_s2_e6_c96_se0.25'], # hard-swish
|
|
|
|
# stage 6, 7x7 in
|
|
|
|
['cn_r1_k1_s1_c576'], # hard-swish
|
|
|
|
]
|
|
|
|
else:
|
|
|
|
num_features = 1280
|
|
|
|
if 'minimal' in variant:
|
|
|
|
act_layer = nn.ReLU
|
|
|
|
arch_def = [
|
|
|
|
# stage 0, 112x112 in
|
|
|
|
['ds_r1_k3_s1_e1_c16'],
|
|
|
|
# stage 1, 112x112 in
|
|
|
|
['ir_r1_k3_s2_e4_c24', 'ir_r1_k3_s1_e3_c24'],
|
|
|
|
# stage 2, 56x56 in
|
|
|
|
['ir_r3_k3_s2_e3_c40'],
|
|
|
|
# stage 3, 28x28 in
|
|
|
|
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'],
|
|
|
|
# stage 4, 14x14in
|
|
|
|
['ir_r2_k3_s1_e6_c112'],
|
|
|
|
# stage 5, 14x14in
|
|
|
|
['ir_r3_k3_s2_e6_c160'],
|
|
|
|
# stage 6, 7x7 in
|
|
|
|
['cn_r1_k1_s1_c960'],
|
|
|
|
]
|
|
|
|
else:
|
|
|
|
act_layer = HardSwish
|
|
|
|
arch_def = [
|
|
|
|
# stage 0, 112x112 in
|
|
|
|
['ds_r1_k3_s1_e1_c16_nre'], # relu
|
|
|
|
# stage 1, 112x112 in
|
|
|
|
['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu
|
|
|
|
# stage 2, 56x56 in
|
|
|
|
['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu
|
|
|
|
# stage 3, 28x28 in
|
|
|
|
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish
|
|
|
|
# stage 4, 14x14in
|
|
|
|
['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish
|
|
|
|
# stage 5, 14x14in
|
|
|
|
['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish
|
|
|
|
# stage 6, 7x7 in
|
|
|
|
['cn_r1_k1_s1_c960'], # hard-swish
|
|
|
|
]
|
|
|
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
block_args=decode_arch_def(arch_def),
|
|
|
|
num_features=num_features,
|
|
|
|
stem_size=16,
|
|
|
|
channel_multiplier=channel_multiplier,
|
|
|
|
norm_kwargs=resolve_bn_args(kwargs),
|
|
|
|
act_layer=act_layer,
|
|
|
|
attn_kwargs=dict(act_layer=nn.ReLU, gate_fn=hard_sigmoid, reduce_mid=True, divisible_by=8),
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
model = _create_model(model_kwargs, default_cfgs[variant], pretrained)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def _gen_mobilenet_v3_eca(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
|
|
|
|
"""Creates a MobileNet-V3 model.
|
|
|
|
|
|
|
|
Ref impl: ?
|
|
|
|
Paper: https://arxiv.org/abs/1905.02244
|
|
|
|
|
|
|
|
Args:
|
|
|
|
channel_multiplier: multiplier to number of channels per layer.
|
|
|
|
"""
|
|
|
|
if 'small' in variant:
|
|
|
|
num_features = 1024
|
|
|
|
act_layer = HardSwish
|
|
|
|
arch_def = [
|
|
|
|
# stage 0, 112x112 in
|
|
|
|
['ds_r1_k3_s2_e1_c16_nre'], # relu
|
|
|
|
# stage 1, 56x56 in
|
|
|
|
['ir_r1_k3_s2_e4.5_c24_nre', 'ir_r1_k3_s1_e3.67_c24_nre'], # relu
|
|
|
|
# stage 2, 28x28 in
|
|
|
|
['ir_r1_k5_s2_e4_c40', 'ir_r2_k5_s1_e6_c40'], # hard-swish
|
|
|
|
# stage 3, 14x14 in
|
|
|
|
['ir_r2_k5_s1_e3_c48'], # hard-swish
|
|
|
|
# stage 4, 14x14in
|
|
|
|
['ir_r3_k5_s2_e6_c96'], # hard-swish
|
|
|
|
# stage 6, 7x7 in
|
|
|
|
['cn_r1_k1_s1_c576'], # hard-swish
|
|
|
|
]
|
|
|
|
else:
|
|
|
|
num_features = 1280
|
|
|
|
act_layer = HardSwish
|
|
|
|
arch_def = [
|
|
|
|
# stage 0, 112x112 in
|
|
|
|
['ds_r1_k3_s1_e1_c16_nre'], # relu
|
|
|
|
# stage 1, 112x112 in
|
|
|
|
['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu
|
|
|
|
# stage 2, 56x56 in
|
|
|
|
['ir_r3_k5_s2_e3_c40_nre'], # relu
|
|
|
|
# stage 3, 28x28 in
|
|
|
|
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish
|
|
|
|
# stage 4, 14x14in
|
|
|
|
['ir_r2_k3_s1_e6_c112'], # hard-swish
|
|
|
|
# stage 5, 14x14in
|
|
|
|
['ir_r3_k5_s2_e6_c160'], # hard-swish
|
|
|
|
# stage 6, 7x7 in
|
|
|
|
['cn_r1_k1_s1_c960'], # hard-swish
|
|
|
|
]
|
|
|
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
block_args=decode_arch_def(arch_def),
|
|
|
|
num_features=num_features,
|
|
|
|
stem_size=16,
|
|
|
|
channel_multiplier=channel_multiplier,
|
|
|
|
norm_kwargs=resolve_bn_args(kwargs),
|
|
|
|
act_layer=act_layer,
|
|
|
|
attn_layer='ceca',
|
|
|
|
attn_kwargs=dict(gate_fn=hard_sigmoid),
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
model = _create_model(model_kwargs, default_cfgs[variant], pretrained)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def mobilenetv3_large_075(pretrained=False, **kwargs):
|
|
|
|
""" MobileNet V3 """
|
|
|
|
model = _gen_mobilenet_v3('mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def mobilenetv3_large_100(pretrained=False, **kwargs):
|
|
|
|
""" MobileNet V3 """
|
|
|
|
model = _gen_mobilenet_v3('mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def mobilenetv3_small_075(pretrained=False, **kwargs):
|
|
|
|
""" MobileNet V3 """
|
|
|
|
model = _gen_mobilenet_v3('mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def mobilenetv3_small_100(pretrained=False, **kwargs):
|
|
|
|
""" MobileNet V3 """
|
|
|
|
model = _gen_mobilenet_v3('mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def mobilenetv3_eca_large(pretrained=False, **kwargs):
|
|
|
|
""" MobileNet V3 """
|
|
|
|
model = _gen_mobilenet_v3_eca('mobilenetv3_eca_large', 1.0, pretrained=pretrained, **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def mobilenetv3_rw(pretrained=False, **kwargs):
|
|
|
|
""" MobileNet V3 """
|
|
|
|
if pretrained:
|
|
|
|
# pretrained model trained with non-default BN epsilon
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
model = _gen_mobilenet_v3_rw('mobilenetv3_rw', 1.0, pretrained=pretrained, **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def tf_mobilenetv3_large_075(pretrained=False, **kwargs):
|
|
|
|
""" MobileNet V3 """
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
model = _gen_mobilenet_v3('tf_mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def tf_mobilenetv3_large_100(pretrained=False, **kwargs):
|
|
|
|
""" MobileNet V3 """
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
model = _gen_mobilenet_v3('tf_mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def tf_mobilenetv3_large_minimal_100(pretrained=False, **kwargs):
|
|
|
|
""" MobileNet V3 """
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
model = _gen_mobilenet_v3('tf_mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def tf_mobilenetv3_small_075(pretrained=False, **kwargs):
|
|
|
|
""" MobileNet V3 """
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
model = _gen_mobilenet_v3('tf_mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def tf_mobilenetv3_small_100(pretrained=False, **kwargs):
|
|
|
|
""" MobileNet V3 """
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
model = _gen_mobilenet_v3('tf_mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def tf_mobilenetv3_small_minimal_100(pretrained=False, **kwargs):
|
|
|
|
""" MobileNet V3 """
|
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
|
|
|
|
kwargs['pad_type'] = 'same'
|
|
|
|
model = _gen_mobilenet_v3('tf_mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs)
|
|
|
|
return model
|