# Results
CSV files containing an ImageNet-1K validation and out-of-distribution (OOD) test set validation results for all included models with pretrained weights and default configurations is located [here ](https://github.com/rwightman/pytorch-image-models/tree/master/results ).
## Self-trained Weights
I've leveraged the training scripts in this repository to train a few of the models with to good levels of performance.
|Model | Acc@1 (Err) | Acc@5 (Err) | Param # (M) | Interpolation | Image Size |
|---|---|---|---|---|---|
| efficientnet_b3a | 82.242 (17.758) | 96.114 (3.886) | 12.23 | bicubic | 320 (1.0 crop) |
| efficientnet_b3 | 82.076 (17.924) | 96.020 (3.980) | 12.23 | bicubic | 300 |
| regnet_32 | 82.002 (17.998) | 95.906 (4.094) | 19.44 | bicubic | 224 |
| skresnext50d_32x4d | 81.278 (18.722) | 95.366 (4.634) | 27.5 | bicubic | 288 (1.0 crop) |
| seresnext50d_32x4d | 81.266 (18.734) | 95.620 (4.380) | 27.6 | bicubic | 224 |
| efficientnet_b2a | 80.608 (19.392) | 95.310 (4.690) | 9.11 | bicubic | 288 (1.0 crop) |
| resnet50d | 80.530 (19.470) | 95.160 (4.840) | 25.6 | bicubic | 224 |
| mixnet_xl | 80.478 (19.522) | 94.932 (5.068) | 11.90 | bicubic | 224 |
| efficientnet_b2 | 80.402 (19.598) | 95.076 (4.924) | 9.11 | bicubic | 260 |
| seresnet50 | 80.274 (19.726) | 95.070 (4.930) | 28.1 | bicubic | 224 |
| skresnext50d_32x4d | 80.156 (19.844) | 94.642 (5.358) | 27.5 | bicubic | 224 |
| cspdarknet53 | 80.058 (19.942) | 95.084 (4.916) | 27.6 | bicubic | 256 |
| cspresnext50 | 80.040 (19.960) | 94.944 (5.056) | 20.6 | bicubic | 224 |
| resnext50_32x4d | 79.762 (20.238) | 94.600 (5.400) | 25 | bicubic | 224 |
| resnext50d_32x4d | 79.674 (20.326) | 94.868 (5.132) | 25.1 | bicubic | 224 |
| cspresnet50 | 79.574 (20.426) | 94.712 (5.288) | 21.6 | bicubic | 256 |
| ese_vovnet39b | 79.320 (20.680) | 94.710 (5.290) | 24.6 | bicubic | 224 |
| resnetblur50 | 79.290 (20.710) | 94.632 (5.368) | 25.6 | bicubic | 224 |
| dpn68b | 79.216 (20.784) | 94.414 (5.586) | 12.6 | bicubic | 224 |
| resnet50 | 79.038 (20.962) | 94.390 (5.610) | 25.6 | bicubic | 224 |
| mixnet_l | 78.976 (21.024 | 94.184 (5.816) | 7.33 | bicubic | 224 |
| efficientnet_b1 | 78.692 (21.308) | 94.086 (5.914) | 7.79 | bicubic | 240 |
| efficientnet_es | 78.066 (21.934) | 93.926 (6.074) | 5.44 | bicubic | 224 |
| seresnext26t_32x4d | 77.998 (22.002) | 93.708 (6.292) | 16.8 | bicubic | 224 |
| seresnext26tn_32x4d | 77.986 (22.014) | 93.746 (6.254) | 16.8 | bicubic | 224 |
| efficientnet_b0 | 77.698 (22.302) | 93.532 (6.468) | 5.29 | bicubic | 224 |
| seresnext26d_32x4d | 77.602 (22.398) | 93.608 (6.392) | 16.8 | bicubic | 224 |
| mobilenetv2_120d | 77.294 (22.706 | 93.502 (6.498) | 5.8 | bicubic | 224 |
| mixnet_m | 77.256 (22.744) | 93.418 (6.582) | 5.01 | bicubic | 224 |
| resnet34d | 77.116 (22.884) | 93.382 (6.618) | 21.8 | bicubic | 224 |
| seresnext26_32x4d | 77.104 (22.896) | 93.316 (6.684) | 16.8 | bicubic | 224 |
| skresnet34 | 76.912 (23.088) | 93.322 (6.678) | 22.2 | bicubic | 224 |
| ese_vovnet19b_dw | 76.798 (23.202) | 93.268 (6.732) | 6.5 | bicubic | 224 |
| resnet26d | 76.68 (23.32) | 93.166 (6.834) | 16 | bicubic | 224 |
| densenetblur121d | 76.576 (23.424) | 93.190 (6.810) | 8.0 | bicubic | 224 |
| mobilenetv2_140 | 76.524 (23.476) | 92.990 (7.010) | 6.1 | bicubic | 224 |
| mixnet_s | 75.988 (24.012) | 92.794 (7.206) | 4.13 | bicubic | 224 |
| mobilenetv3_large_100 | 75.766 (24.234) | 92.542 (7.458) | 5.5 | bicubic | 224 |
| mobilenetv3_rw | 75.634 (24.366) | 92.708 (7.292) | 5.5 | bicubic | 224 |
| mnasnet_a1 | 75.448 (24.552) | 92.604 (7.396) | 3.89 | bicubic | 224 |
| resnet26 | 75.292 (24.708) | 92.57 (7.43) | 16 | bicubic | 224 |
| fbnetc_100 | 75.124 (24.876) | 92.386 (7.614) | 5.6 | bilinear | 224 |
| resnet34 | 75.110 (24.890) | 92.284 (7.716) | 22 | bilinear | 224 |
| mobilenetv2_110d | 75.052 (24.948) | 92.180 (7.820) | 4.5 | bicubic | 224 |
| seresnet34 | 74.808 (25.192) | 92.124 (7.876) | 22 | bilinear | 224 |
| mnasnet_b1 | 74.658 (25.342) | 92.114 (7.886) | 4.38 | bicubic | 224 |
| spnasnet_100 | 74.084 (25.916) | 91.818 (8.182) | 4.42 | bilinear | 224 |
| skresnet18 | 73.038 (26.962) | 91.168 (8.832) | 11.9 | bicubic | 224 |
| mobilenetv2_100 | 72.978 (27.022) | 91.016 (8.984) | 3.5 | bicubic | 224 |
| resnet18d | 72.260 (27.740) | 90.696 (9.304) | 11.7 | bicubic | 224 |
| seresnet18 | 71.742 (28.258) | 90.334 (9.666) | 11.8 | bicubic | 224 |
## Ported and Other Weights
For weights ported from other deep learning frameworks (Tensorflow, MXNet GluonCV) or copied from other PyTorch sources, please see the full results tables for ImageNet and various OOD test sets at in the [results tables ](https://github.com/rwightman/pytorch-image-models/tree/master/results ).
Model code .py files contain links to original sources of models and weights.