You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
80 lines
2.9 KiB
80 lines
2.9 KiB
5 years ago
|
""" Conv2d w/ Same Padding
|
||
|
|
||
|
Hacked together by Ross Wightman
|
||
|
"""
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from typing import Union, List, Tuple, Optional, Callable
|
||
|
import math
|
||
|
|
||
|
from .conv_helpers import get_padding
|
||
|
|
||
|
|
||
|
def _is_static_pad(kernel_size, stride=1, dilation=1, **_):
|
||
|
return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0
|
||
|
|
||
|
|
||
|
def _calc_same_pad(i: int, k: int, s: int, d: int):
|
||
|
return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0)
|
||
|
|
||
|
|
||
|
def conv2d_same(
|
||
|
x, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, stride: Tuple[int, int] = (1, 1),
|
||
|
padding: Tuple[int, int] = (0, 0), dilation: Tuple[int, int] = (1, 1), groups: int = 1):
|
||
|
ih, iw = x.size()[-2:]
|
||
|
kh, kw = weight.size()[-2:]
|
||
|
pad_h = _calc_same_pad(ih, kh, stride[0], dilation[0])
|
||
|
pad_w = _calc_same_pad(iw, kw, stride[1], dilation[1])
|
||
|
if pad_h > 0 or pad_w > 0:
|
||
|
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
|
||
|
return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups)
|
||
|
|
||
|
|
||
|
class Conv2dSame(nn.Conv2d):
|
||
|
""" Tensorflow like 'SAME' convolution wrapper for 2D convolutions
|
||
|
"""
|
||
|
|
||
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
||
|
padding=0, dilation=1, groups=1, bias=True):
|
||
|
super(Conv2dSame, self).__init__(
|
||
|
in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return conv2d_same(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
|
||
|
|
||
|
|
||
|
def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]:
|
||
|
dynamic = False
|
||
|
if isinstance(padding, str):
|
||
|
# for any string padding, the padding will be calculated for you, one of three ways
|
||
|
padding = padding.lower()
|
||
|
if padding == 'same':
|
||
|
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
|
||
|
if _is_static_pad(kernel_size, **kwargs):
|
||
|
# static case, no extra overhead
|
||
|
padding = get_padding(kernel_size, **kwargs)
|
||
|
else:
|
||
|
# dynamic 'SAME' padding, has runtime/GPU memory overhead
|
||
|
padding = 0
|
||
|
dynamic = True
|
||
|
elif padding == 'valid':
|
||
|
# 'VALID' padding, same as padding=0
|
||
|
padding = 0
|
||
|
else:
|
||
|
# Default to PyTorch style 'same'-ish symmetric padding
|
||
|
padding = get_padding(kernel_size, **kwargs)
|
||
|
return padding, dynamic
|
||
|
|
||
|
|
||
|
def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs):
|
||
|
padding = kwargs.pop('padding', '')
|
||
|
kwargs.setdefault('bias', False)
|
||
|
padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs)
|
||
|
if is_dynamic:
|
||
|
return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs)
|
||
|
else:
|
||
|
return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs)
|
||
|
|
||
|
|