You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
353 lines
14 KiB
353 lines
14 KiB
4 years ago
|
""" Hybrid Vision Transformer (ViT) in PyTorch
|
||
|
|
||
|
A PyTorch implement of the Hybrid Vision Transformers as described in
|
||
|
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale'
|
||
|
- https://arxiv.org/abs/2010.11929
|
||
|
|
||
|
NOTE This relies on code in vision_transformer.py. The hybrid model definitions were moved here to
|
||
|
keep file sizes sane.
|
||
|
|
||
|
Hacked together by / Copyright 2020 Ross Wightman
|
||
|
"""
|
||
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||
|
from .layers import StdConv2dSame, StdConv2d, to_2tuple
|
||
|
from .resnet import resnet26d, resnet50d
|
||
|
from .resnetv2 import ResNetV2, create_resnetv2_stem
|
||
|
from .registry import register_model
|
||
|
from timm.models.vision_transformer import _create_vision_transformer
|
||
|
|
||
|
|
||
|
def _cfg(url='', **kwargs):
|
||
|
return {
|
||
|
'url': url,
|
||
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
||
|
'crop_pct': .9, 'interpolation': 'bicubic',
|
||
|
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
|
||
|
'first_conv': 'patch_embed.backbone.stem.conv', 'classifier': 'head',
|
||
|
**kwargs
|
||
|
}
|
||
|
|
||
|
|
||
|
default_cfgs = {
|
||
|
# hybrid in-21k models (weights ported from official Google JAX impl where they exist)
|
||
|
'vit_base_r50_s16_224_in21k': _cfg(
|
||
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth',
|
||
|
num_classes=21843, crop_pct=0.9),
|
||
|
|
||
|
# hybrid in-1k models (weights ported from official JAX impl)
|
||
|
'vit_base_r50_s16_384': _cfg(
|
||
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth',
|
||
|
input_size=(3, 384, 384), crop_pct=1.0),
|
||
|
|
||
|
# hybrid in-1k models (mostly untrained, experimental configs w/ resnetv2 stdconv backbones)
|
||
|
'vit_tiny_r_s16_p8_224': _cfg(),
|
||
|
'vit_tiny_r_s16_p8_384': _cfg(
|
||
|
input_size=(3, 384, 384), crop_pct=1.0),
|
||
|
|
||
|
'vit_small_r_s16_p8_224': _cfg(
|
||
|
crop_pct=1.0),
|
||
|
'vit_small_r_s16_p8_384': _cfg(
|
||
|
input_size=(3, 384, 384), crop_pct=1.0),
|
||
|
|
||
|
'vit_small_r20_s16_p2_224': _cfg(),
|
||
|
'vit_small_r20_s16_p2_384': _cfg(
|
||
|
input_size=(3, 384, 384), crop_pct=1.0),
|
||
|
|
||
|
'vit_small_r20_s16_224': _cfg(),
|
||
|
'vit_small_r20_s16_384': _cfg(
|
||
|
input_size=(3, 384, 384), crop_pct=1.0),
|
||
|
|
||
|
'vit_small_r26_s32_224': _cfg(),
|
||
|
'vit_small_r26_s32_384': _cfg(
|
||
|
input_size=(3, 384, 384), crop_pct=1.0),
|
||
|
|
||
|
'vit_base_r20_s16_224': _cfg(),
|
||
|
'vit_base_r20_s16_384': _cfg(
|
||
|
input_size=(3, 384, 384), crop_pct=1.0),
|
||
|
|
||
|
'vit_base_r26_s32_224': _cfg(),
|
||
|
'vit_base_r26_s32_384': _cfg(
|
||
|
input_size=(3, 384, 384), crop_pct=1.0),
|
||
|
|
||
|
'vit_base_r50_s16_224': _cfg(),
|
||
|
|
||
|
'vit_large_r50_s32_224': _cfg(),
|
||
|
'vit_large_r50_s32_384': _cfg(
|
||
|
input_size=(3, 384, 384), crop_pct=1.0),
|
||
|
|
||
|
# hybrid models (using timm resnet backbones)
|
||
|
'vit_small_resnet26d_224': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
|
||
|
'vit_small_resnet50d_s16_224': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
|
||
|
'vit_base_resnet26d_224': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
|
||
|
'vit_base_resnet50d_224': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
|
||
|
}
|
||
|
|
||
|
|
||
|
def _resnetv2(layers=(3, 4, 9), **kwargs):
|
||
|
""" ResNet-V2 backbone helper"""
|
||
|
padding_same = kwargs.get('padding_same', True)
|
||
|
if padding_same:
|
||
|
stem_type = 'same'
|
||
|
conv_layer = StdConv2dSame
|
||
|
else:
|
||
|
stem_type = ''
|
||
|
conv_layer = StdConv2d
|
||
|
if len(layers):
|
||
|
backbone = ResNetV2(
|
||
|
layers=layers, num_classes=0, global_pool='', in_chans=kwargs.get('in_chans', 3),
|
||
|
preact=False, stem_type=stem_type, conv_layer=conv_layer)
|
||
|
else:
|
||
|
backbone = create_resnetv2_stem(
|
||
|
kwargs.get('in_chans', 3), stem_type=stem_type, preact=False, conv_layer=conv_layer)
|
||
|
return backbone
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_base_r50_s16_224_in21k(pretrained=False, **kwargs):
|
||
|
""" R50+ViT-B/16 hybrid model from original paper (https://arxiv.org/abs/2010.11929).
|
||
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
||
|
"""
|
||
|
backbone = _resnetv2(layers=(3, 4, 9), **kwargs)
|
||
|
model_kwargs = dict(
|
||
|
embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, representation_size=768, **kwargs)
|
||
|
model = _create_vision_transformer('vit_base_r50_s16_224_in21k', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_base_r50_s16_384(pretrained=False, **kwargs):
|
||
|
""" R50+ViT-B/16 hybrid from original paper (https://arxiv.org/abs/2010.11929).
|
||
|
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
|
||
|
"""
|
||
|
backbone = _resnetv2((3, 4, 9), **kwargs)
|
||
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_base_r50_s16_384', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_tiny_r_s16_p8_224(pretrained=False, **kwargs):
|
||
|
""" R+ViT-Ti/S16 w/ 8x8 patch hybrid @ 224 x 224.
|
||
|
"""
|
||
|
backbone = _resnetv2(layers=(), **kwargs)
|
||
|
model_kwargs = dict(
|
||
|
patch_size=8, embed_dim=192, depth=12, num_heads=3, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_tiny_r_s16_p8_224', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_tiny_r_s16_p8_384(pretrained=False, **kwargs):
|
||
|
""" R+ViT-Ti/S16 w/ 8x8 patch hybrid @ 224 x 224.
|
||
|
"""
|
||
|
backbone = _resnetv2(layers=(), **kwargs)
|
||
|
model_kwargs = dict(
|
||
|
patch_size=8, embed_dim=192, depth=12, num_heads=3, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_tiny_r_s16_p8_384', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_small_r_s16_p8_224(pretrained=False, **kwargs):
|
||
|
""" R+ViT-S/S16 w/ 8x8 patch hybrid @ 224 x 224.
|
||
|
"""
|
||
|
backbone = _resnetv2(layers=(), **kwargs)
|
||
|
model_kwargs = dict(
|
||
|
patch_size=8, embed_dim=384, depth=12, num_heads=6, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_small_r_s16_p8_224', pretrained=pretrained, **model_kwargs)
|
||
|
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_small_r_s16_p8_384(pretrained=False, **kwargs):
|
||
|
""" R+ViT-S/S16 w/ 8x8 patch hybrid @ 224 x 224.
|
||
|
"""
|
||
|
backbone = _resnetv2(layers=(), **kwargs)
|
||
|
model_kwargs = dict(
|
||
|
patch_size=8, embed_dim=384, depth=12, num_heads=6, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_small_r_s16_p8_384', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_small_r20_s16_p2_224(pretrained=False, **kwargs):
|
||
|
""" R52+ViT-S/S16 w/ 2x2 patch hybrid @ 224 x 224.
|
||
|
"""
|
||
|
backbone = _resnetv2((2, 4), **kwargs)
|
||
|
model_kwargs = dict(
|
||
|
patch_size=2, embed_dim=384, depth=12, num_heads=6, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_small_r20_s16_p2_224', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_small_r20_s16_p2_384(pretrained=False, **kwargs):
|
||
|
""" R20+ViT-S/S16 w/ 2x2 Patch hybrid @ 384x384.
|
||
|
"""
|
||
|
backbone = _resnetv2((2, 4), **kwargs)
|
||
|
model_kwargs = dict(
|
||
|
embed_dim=384, patch_size=2, depth=12, num_heads=6, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_small_r20_s16_p2_384', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_small_r20_s16_224(pretrained=False, **kwargs):
|
||
|
""" R20+ViT-S/S16 hybrid.
|
||
|
"""
|
||
|
backbone = _resnetv2((2, 2, 2), **kwargs)
|
||
|
model_kwargs = dict(embed_dim=384, depth=12, num_heads=6, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_small_r20_s16_224', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_small_r20_s16_384(pretrained=False, **kwargs):
|
||
|
""" R20+ViT-S/S16 hybrid @ 384x384.
|
||
|
"""
|
||
|
backbone = _resnetv2((2, 2, 2), **kwargs)
|
||
|
model_kwargs = dict(embed_dim=384, depth=12, num_heads=6, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_small_r20_s16_384', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_small_r26_s32_224(pretrained=False, **kwargs):
|
||
|
""" R26+ViT-S/S32 hybrid.
|
||
|
"""
|
||
|
backbone = _resnetv2((2, 2, 2, 2), **kwargs)
|
||
|
model_kwargs = dict(embed_dim=384, depth=12, num_heads=6, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_small_r26_s32_224', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_small_r26_s32_384(pretrained=False, **kwargs):
|
||
|
""" R26+ViT-S/S32 hybrid @ 384x384.
|
||
|
"""
|
||
|
backbone = _resnetv2((2, 2, 2, 2), **kwargs)
|
||
|
model_kwargs = dict(embed_dim=384, depth=12, num_heads=6, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_small_r26_s32_384', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_base_r20_s16_224(pretrained=False, **kwargs):
|
||
|
""" R20+ViT-B/S16 hybrid.
|
||
|
"""
|
||
|
backbone = _resnetv2((2, 2, 2), **kwargs)
|
||
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_base_r20_s16_224', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_base_r20_s16_384(pretrained=False, **kwargs):
|
||
|
""" R20+ViT-B/S16 hybrid.
|
||
|
"""
|
||
|
backbone = _resnetv2((2, 2, 2), **kwargs)
|
||
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_base_r20_s16_384', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_base_r26_s32_224(pretrained=False, **kwargs):
|
||
|
""" R26+ViT-B/S32 hybrid.
|
||
|
"""
|
||
|
backbone = _resnetv2((2, 2, 2, 2), **kwargs)
|
||
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_base_r26_s32_224', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_base_r26_s32_384(pretrained=False, **kwargs):
|
||
|
""" R26+ViT-B/S32 hybrid.
|
||
|
"""
|
||
|
backbone = _resnetv2((2, 2, 2, 2), **kwargs)
|
||
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_base_r26_s32_384', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_base_r50_s16_224(pretrained=False, **kwargs):
|
||
|
""" R50+ViT-B/S16 hybrid from original paper (https://arxiv.org/abs/2010.11929).
|
||
|
"""
|
||
|
backbone = _resnetv2((3, 4, 9), **kwargs)
|
||
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_base_r50_s16_224', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_large_r50_s32_224(pretrained=False, **kwargs):
|
||
|
""" R50+ViT-L/S32 hybrid.
|
||
|
"""
|
||
|
backbone = _resnetv2((3, 4, 6, 3), **kwargs)
|
||
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_large_r50_s32_224', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_large_r50_s32_224_in21k(pretrained=False, **kwargs):
|
||
|
""" R50+ViT-L/S32 hybrid.
|
||
|
"""
|
||
|
backbone = _resnetv2((3, 4, 6, 3), **kwargs)
|
||
|
model_kwargs = dict(
|
||
|
embed_dim=768, depth=12, num_heads=12, representation_size=768, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_large_r50_s32_224_in21k', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_large_r50_s32_384(pretrained=False, **kwargs):
|
||
|
""" R50+ViT-L/S32 hybrid.
|
||
|
"""
|
||
|
backbone = _resnetv2((3, 4, 6, 3), **kwargs)
|
||
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_large_r50_s32_384', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_small_resnet26d_224(pretrained=False, **kwargs):
|
||
|
""" Custom ViT small hybrid w/ ResNet26D stride 32. No pretrained weights.
|
||
|
"""
|
||
|
backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4])
|
||
|
model_kwargs = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_small_resnet26d_224', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_small_resnet50d_s16_224(pretrained=False, **kwargs):
|
||
|
""" Custom ViT small hybrid w/ ResNet50D 3-stages, stride 16. No pretrained weights.
|
||
|
"""
|
||
|
backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[3])
|
||
|
model_kwargs = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_small_resnet50d_s16_224', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_base_resnet26d_224(pretrained=False, **kwargs):
|
||
|
""" Custom ViT base hybrid w/ ResNet26D stride 32. No pretrained weights.
|
||
|
"""
|
||
|
backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4])
|
||
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_base_resnet26d_224', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def vit_base_resnet50d_224(pretrained=False, **kwargs):
|
||
|
""" Custom ViT base hybrid w/ ResNet50D stride 32. No pretrained weights.
|
||
|
"""
|
||
|
backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4])
|
||
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs)
|
||
|
model = _create_vision_transformer('vit_base_resnet50d_224', pretrained=pretrained, **model_kwargs)
|
||
|
return model
|