<!doctype html>
< html lang = "en" class = "no-js" >
< head >
< meta charset = "utf-8" >
< meta name = "viewport" content = "width=device-width,initial-scale=1" >
< meta name = "description" content = "Pretained Image Recognition Models" >
< link rel = "icon" href = "../assets/images/favicon.png" >
< meta name = "generator" content = "mkdocs-1.3.0, mkdocs-material-8.2.9" >
< title > Results - Pytorch Image Models< / title >
< link rel = "stylesheet" href = "../assets/stylesheets/main.120efc48.min.css" >
< link rel = "stylesheet" href = "../assets/stylesheets/palette.9647289d.min.css" >
< link rel = "preconnect" href = "https://fonts.gstatic.com" crossorigin >
< link rel = "stylesheet" href = "https://fonts.googleapis.com/css?family=Roboto:300,300i,400,400i,700,700i%7CRoboto+Mono:400,400i,700,700i&display=fallback" >
< style > : root { --md-text-font : "Roboto" ; --md-code-font : "Roboto Mono" } < / style >
< script > _ _md _scope = new URL ( ".." , location ) , _ _md _get = ( e , _ = localStorage , t = _ _md _scope ) => JSON . parse ( _ . getItem ( t . pathname + "." + e ) ) , _ _md _set = ( e , _ , t = localStorage , a = _ _md _scope ) => { try { t . setItem ( a . pathname + "." + e , JSON . stringify ( _ ) ) } catch ( e ) { } } < / script >
< / head >
< body dir = "ltr" data-md-color-scheme = "" data-md-color-primary = "none" data-md-color-accent = "none" >
< input class = "md-toggle" data-md-toggle = "drawer" type = "checkbox" id = "__drawer" autocomplete = "off" >
< input class = "md-toggle" data-md-toggle = "search" type = "checkbox" id = "__search" autocomplete = "off" >
< label class = "md-overlay" for = "__drawer" > < / label >
< div data-md-component = "skip" >
< a href = "#results" class = "md-skip" >
Skip to content
< / a >
< / div >
< div data-md-component = "announce" >
< / div >
< header class = "md-header" data-md-component = "header" >
< nav class = "md-header__inner md-grid" aria-label = "Header" >
< a href = ".." title = "Pytorch Image Models" class = "md-header__button md-logo" aria-label = "Pytorch Image Models" data-md-component = "logo" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M12 8a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3 3 3 0 0 0 3 3m0 3.54C9.64 9.35 6.5 8 3 8v11c3.5 0 6.64 1.35 9 3.54 2.36-2.19 5.5-3.54 9-3.54V8c-3.5 0-6.64 1.35-9 3.54Z" / > < / svg >
< / a >
< label class = "md-header__button md-icon" for = "__drawer" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z" / > < / svg >
< / label >
< div class = "md-header__title" data-md-component = "header-title" >
< div class = "md-header__ellipsis" >
< div class = "md-header__topic" >
< span class = "md-ellipsis" >
Pytorch Image Models
< / span >
< / div >
< div class = "md-header__topic" data-md-component = "header-topic" >
< span class = "md-ellipsis" >
Results
< / span >
< / div >
< / div >
< / div >
< label class = "md-header__button md-icon" for = "__search" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z" / > < / svg >
< / label >
< div class = "md-search" data-md-component = "search" role = "dialog" >
< label class = "md-search__overlay" for = "__search" > < / label >
< div class = "md-search__inner" role = "search" >
< form class = "md-search__form" name = "search" >
< input type = "text" class = "md-search__input" name = "query" aria-label = "Search" placeholder = "Search" autocapitalize = "off" autocorrect = "off" autocomplete = "off" spellcheck = "false" data-md-component = "search-query" required >
< label class = "md-search__icon md-icon" for = "__search" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z" / > < / svg >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z" / > < / svg >
< / label >
< nav class = "md-search__options" aria-label = "Search" >
< button type = "reset" class = "md-search__icon md-icon" aria-label = "Clear" tabindex = "-1" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z" / > < / svg >
< / button >
< / nav >
< / form >
< div class = "md-search__output" >
< div class = "md-search__scrollwrap" data-md-scrollfix >
< div class = "md-search-result" data-md-component = "search-result" >
< div class = "md-search-result__meta" >
Initializing search
< / div >
< ol class = "md-search-result__list" > < / ol >
< / div >
< / div >
< / div >
< / div >
< / div >
< div class = "md-header__source" >
< a href = "https://github.com/rwightman/pytorch-image-models" title = "Go to repository" class = "md-source" data-md-component = "source" >
< div class = "md-source__icon md-icon" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 448 512" > <!-- ! Font Awesome Free 6.1.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2022 Fonticons, Inc. --> < path d = "M439.55 236.05 244 40.45a28.87 28.87 0 0 0-40.81 0l-40.66 40.63 51.52 51.52c27.06-9.14 52.68 16.77 43.39 43.68l49.66 49.66c34.23-11.8 61.18 31 35.47 56.69-26.49 26.49-70.21-2.87-56-37.34L240.22 199v121.85c25.3 12.54 22.26 41.85 9.08 55a34.34 34.34 0 0 1-48.55 0c-17.57-17.6-11.07-46.91 11.25-56v-123c-20.8-8.51-24.6-30.74-18.64-45L142.57 101 8.45 235.14a28.86 28.86 0 0 0 0 40.81l195.61 195.6a28.86 28.86 0 0 0 40.8 0l194.69-194.69a28.86 28.86 0 0 0 0-40.81z" / > < / svg >
< / div >
< div class = "md-source__repository" >
rwightman/pytorch-image-models
< / div >
< / a >
< / div >
< / nav >
< / header >
< div class = "md-container" data-md-component = "container" >
< main class = "md-main" data-md-component = "main" >
< div class = "md-main__inner md-grid" >
< div class = "md-sidebar md-sidebar--primary" data-md-component = "sidebar" data-md-type = "navigation" >
< div class = "md-sidebar__scrollwrap" >
< div class = "md-sidebar__inner" >
< nav class = "md-nav md-nav--primary" aria-label = "Navigation" data-md-level = "0" >
< label class = "md-nav__title" for = "__drawer" >
< a href = ".." title = "Pytorch Image Models" class = "md-nav__button md-logo" aria-label = "Pytorch Image Models" data-md-component = "logo" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M12 8a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3 3 3 0 0 0 3 3m0 3.54C9.64 9.35 6.5 8 3 8v11c3.5 0 6.64 1.35 9 3.54 2.36-2.19 5.5-3.54 9-3.54V8c-3.5 0-6.64 1.35-9 3.54Z" / > < / svg >
< / a >
Pytorch Image Models
< / label >
< div class = "md-nav__source" >
< a href = "https://github.com/rwightman/pytorch-image-models" title = "Go to repository" class = "md-source" data-md-component = "source" >
< div class = "md-source__icon md-icon" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 448 512" > <!-- ! Font Awesome Free 6.1.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2022 Fonticons, Inc. --> < path d = "M439.55 236.05 244 40.45a28.87 28.87 0 0 0-40.81 0l-40.66 40.63 51.52 51.52c27.06-9.14 52.68 16.77 43.39 43.68l49.66 49.66c34.23-11.8 61.18 31 35.47 56.69-26.49 26.49-70.21-2.87-56-37.34L240.22 199v121.85c25.3 12.54 22.26 41.85 9.08 55a34.34 34.34 0 0 1-48.55 0c-17.57-17.6-11.07-46.91 11.25-56v-123c-20.8-8.51-24.6-30.74-18.64-45L142.57 101 8.45 235.14a28.86 28.86 0 0 0 0 40.81l195.61 195.6a28.86 28.86 0 0 0 40.8 0l194.69-194.69a28.86 28.86 0 0 0 0-40.81z" / > < / svg >
< / div >
< div class = "md-source__repository" >
rwightman/pytorch-image-models
< / div >
< / a >
< / div >
< ul class = "md-nav__list" data-md-scrollfix >
< li class = "md-nav__item" >
< a href = ".." class = "md-nav__link" >
Getting Started
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/" class = "md-nav__link" >
Model Summaries
< / a >
< / li >
< li class = "md-nav__item md-nav__item--nested" >
< input class = "md-nav__toggle md-toggle" data-md-toggle = "__nav_3" type = "checkbox" id = "__nav_3" >
< label class = "md-nav__link" for = "__nav_3" >
Model Pages
< span class = "md-nav__icon md-icon" > < / span >
< / label >
< nav class = "md-nav" aria-label = "Model Pages" data-md-level = "1" >
< label class = "md-nav__title" for = "__nav_3" >
< span class = "md-nav__icon md-icon" > < / span >
Model Pages
< / label >
< ul class = "md-nav__list" data-md-scrollfix >
< li class = "md-nav__item" >
< a href = "../models/adversarial-inception-v3/" class = "md-nav__link" >
Adversarial Inception v3
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/advprop/" class = "md-nav__link" >
AdvProp (EfficientNet)
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/big-transfer/" class = "md-nav__link" >
Big Transfer (BiT)
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/csp-darknet/" class = "md-nav__link" >
CSP-DarkNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/csp-resnet/" class = "md-nav__link" >
CSP-ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/csp-resnext/" class = "md-nav__link" >
CSP-ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/densenet/" class = "md-nav__link" >
DenseNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/dla/" class = "md-nav__link" >
Deep Layer Aggregation
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/dpn/" class = "md-nav__link" >
Dual Path Network (DPN)
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/ecaresnet/" class = "md-nav__link" >
ECA-ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/efficientnet-pruned/" class = "md-nav__link" >
EfficientNet (Knapsack Pruned)
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/efficientnet/" class = "md-nav__link" >
EfficientNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/ensemble-adversarial/" class = "md-nav__link" >
Ensemble Adversarial Inception ResNet v2
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/ese-vovnet/" class = "md-nav__link" >
ESE-VoVNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/fbnet/" class = "md-nav__link" >
FBNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/gloun-inception-v3/" class = "md-nav__link" >
(Gluon) Inception v3
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/gloun-resnet/" class = "md-nav__link" >
(Gluon) ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/gloun-resnext/" class = "md-nav__link" >
(Gluon) ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/gloun-senet/" class = "md-nav__link" >
(Gluon) SENet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/gloun-seresnext/" class = "md-nav__link" >
(Gluon) SE-ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/gloun-xception/" class = "md-nav__link" >
(Gluon) Xception
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/hrnet/" class = "md-nav__link" >
HRNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/ig-resnext/" class = "md-nav__link" >
Instagram ResNeXt WSL
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/inception-resnet-v2/" class = "md-nav__link" >
Inception ResNet v2
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/inception-v3/" class = "md-nav__link" >
Inception v3
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/inception-v4/" class = "md-nav__link" >
Inception v4
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/legacy-se-resnet/" class = "md-nav__link" >
(Legacy) SE-ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/legacy-se-resnext/" class = "md-nav__link" >
(Legacy) SE-ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/legacy-senet/" class = "md-nav__link" >
(Legacy) SENet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/mixnet/" class = "md-nav__link" >
MixNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/mnasnet/" class = "md-nav__link" >
MnasNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/mobilenet-v2/" class = "md-nav__link" >
MobileNet v2
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/mobilenet-v3/" class = "md-nav__link" >
MobileNet v3
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/nasnet/" class = "md-nav__link" >
NASNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/noisy-student/" class = "md-nav__link" >
Noisy Student (EfficientNet)
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/pnasnet/" class = "md-nav__link" >
PNASNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/regnetx/" class = "md-nav__link" >
RegNetX
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/regnety/" class = "md-nav__link" >
RegNetY
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/res2net/" class = "md-nav__link" >
Res2Net
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/res2next/" class = "md-nav__link" >
Res2NeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/resnest/" class = "md-nav__link" >
ResNeSt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/resnet-d/" class = "md-nav__link" >
ResNet-D
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/resnet/" class = "md-nav__link" >
ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/resnext/" class = "md-nav__link" >
ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/rexnet/" class = "md-nav__link" >
RexNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/se-resnet/" class = "md-nav__link" >
SE-ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/selecsls/" class = "md-nav__link" >
SelecSLS
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/seresnext/" class = "md-nav__link" >
SE-ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/skresnet/" class = "md-nav__link" >
SK-ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/skresnext/" class = "md-nav__link" >
SK-ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/spnasnet/" class = "md-nav__link" >
SPNASNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/ssl-resnet/" class = "md-nav__link" >
SSL ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/ssl-resnext/" class = "md-nav__link" >
SSL ResNeXT
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/swsl-resnet/" class = "md-nav__link" >
SWSL ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/swsl-resnext/" class = "md-nav__link" >
SWSL ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/tf-efficientnet-condconv/" class = "md-nav__link" >
(Tensorflow) EfficientNet CondConv
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/tf-efficientnet-lite/" class = "md-nav__link" >
(Tensorflow) EfficientNet Lite
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/tf-efficientnet/" class = "md-nav__link" >
(Tensorflow) EfficientNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/tf-inception-v3/" class = "md-nav__link" >
(Tensorflow) Inception v3
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/tf-mixnet/" class = "md-nav__link" >
(Tensorflow) MixNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/tf-mobilenet-v3/" class = "md-nav__link" >
(Tensorflow) MobileNet v3
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/tresnet/" class = "md-nav__link" >
TResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/vision-transformer/" class = "md-nav__link" >
Vision Transformer (ViT)
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/wide-resnet/" class = "md-nav__link" >
Wide ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/xception/" class = "md-nav__link" >
Xception
< / a >
< / li >
< / ul >
< / nav >
< / li >
< li class = "md-nav__item md-nav__item--active" >
< input class = "md-nav__toggle md-toggle" data-md-toggle = "toc" type = "checkbox" id = "__toc" >
< label class = "md-nav__link md-nav__link--active" for = "__toc" >
Results
< span class = "md-nav__icon md-icon" > < / span >
< / label >
< a href = "./" class = "md-nav__link md-nav__link--active" >
Results
< / a >
< nav class = "md-nav md-nav--secondary" aria-label = "Table of contents" >
< label class = "md-nav__title" for = "__toc" >
< span class = "md-nav__icon md-icon" > < / span >
Table of contents
< / label >
< ul class = "md-nav__list" data-md-component = "toc" data-md-scrollfix >
< li class = "md-nav__item" >
< a href = "#self-trained-weights" class = "md-nav__link" >
Self-trained Weights
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#ported-and-other-weights" class = "md-nav__link" >
Ported and Other Weights
< / a >
< / li >
< / ul >
< / nav >
< / li >
< li class = "md-nav__item" >
< a href = "../scripts/" class = "md-nav__link" >
Scripts
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../training_hparam_examples/" class = "md-nav__link" >
Training Examples
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../feature_extraction/" class = "md-nav__link" >
Feature Extraction
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../changes/" class = "md-nav__link" >
Recent Changes
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../archived_changes/" class = "md-nav__link" >
Archived Changes
< / a >
< / li >
< / ul >
< / nav >
< / div >
< / div >
< / div >
< div class = "md-sidebar md-sidebar--secondary" data-md-component = "sidebar" data-md-type = "toc" >
< div class = "md-sidebar__scrollwrap" >
< div class = "md-sidebar__inner" >
< nav class = "md-nav md-nav--secondary" aria-label = "Table of contents" >
< label class = "md-nav__title" for = "__toc" >
< span class = "md-nav__icon md-icon" > < / span >
Table of contents
< / label >
< ul class = "md-nav__list" data-md-component = "toc" data-md-scrollfix >
< li class = "md-nav__item" >
< a href = "#self-trained-weights" class = "md-nav__link" >
Self-trained Weights
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#ported-and-other-weights" class = "md-nav__link" >
Ported and Other Weights
< / a >
< / li >
< / ul >
< / nav >
< / div >
< / div >
< / div >
< div class = "md-content" data-md-component = "content" >
< article class = "md-content__inner md-typeset" >
< a href = "https://github.com/rwightman/pytorch-image-models/edit/master/docs/results.md" title = "Edit this page" class = "md-content__button md-icon" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M20.71 7.04c.39-.39.39-1.04 0-1.41l-2.34-2.34c-.37-.39-1.02-.39-1.41 0l-1.84 1.83 3.75 3.75M3 17.25V21h3.75L17.81 9.93l-3.75-3.75L3 17.25Z" / > < / svg >
< / a >
< h1 id = "results" > Results< / h1 >
< p > CSV files containing an ImageNet-1K and out-of-distribution (OOD) test set validation results for all models with pretrained weights is located in the repository < a href = "https://github.com/rwightman/pytorch-image-models/tree/master/results" > results folder< / a > .< / p >
< h2 id = "self-trained-weights" > Self-trained Weights< / h2 >
< p > The table below includes ImageNet-1k validation results of model weights that I've trained myself. It is not updated as frequently as the csv results outputs linked above.< / p >
< table >
< thead >
< tr >
< th > Model< / th >
< th > Acc@1 (Err)< / th >
< th > Acc@5 (Err)< / th >
< th > Param # (M)< / th >
< th > Interpolation< / th >
< th > Image Size< / th >
< / tr >
< / thead >
< tbody >
< tr >
< td > efficientnet_b3a< / td >
< td > 82.242 (17.758)< / td >
< td > 96.114 (3.886)< / td >
< td > 12.23< / td >
< td > bicubic< / td >
< td > 320 (1.0 crop)< / td >
< / tr >
< tr >
< td > efficientnet_b3< / td >
< td > 82.076 (17.924)< / td >
< td > 96.020 (3.980)< / td >
< td > 12.23< / td >
< td > bicubic< / td >
< td > 300< / td >
< / tr >
< tr >
< td > regnet_32< / td >
< td > 82.002 (17.998)< / td >
< td > 95.906 (4.094)< / td >
< td > 19.44< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > skresnext50d_32x4d< / td >
< td > 81.278 (18.722)< / td >
< td > 95.366 (4.634)< / td >
< td > 27.5< / td >
< td > bicubic< / td >
< td > 288 (1.0 crop)< / td >
< / tr >
< tr >
< td > seresnext50d_32x4d< / td >
< td > 81.266 (18.734)< / td >
< td > 95.620 (4.380)< / td >
< td > 27.6< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > efficientnet_b2a< / td >
< td > 80.608 (19.392)< / td >
< td > 95.310 (4.690)< / td >
< td > 9.11< / td >
< td > bicubic< / td >
< td > 288 (1.0 crop)< / td >
< / tr >
< tr >
< td > resnet50d< / td >
< td > 80.530 (19.470)< / td >
< td > 95.160 (4.840)< / td >
< td > 25.6< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > mixnet_xl< / td >
< td > 80.478 (19.522)< / td >
< td > 94.932 (5.068)< / td >
< td > 11.90< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > efficientnet_b2< / td >
< td > 80.402 (19.598)< / td >
< td > 95.076 (4.924)< / td >
< td > 9.11< / td >
< td > bicubic< / td >
< td > 260< / td >
< / tr >
< tr >
< td > seresnet50< / td >
< td > 80.274 (19.726)< / td >
< td > 95.070 (4.930)< / td >
< td > 28.1< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > skresnext50d_32x4d< / td >
< td > 80.156 (19.844)< / td >
< td > 94.642 (5.358)< / td >
< td > 27.5< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > cspdarknet53< / td >
< td > 80.058 (19.942)< / td >
< td > 95.084 (4.916)< / td >
< td > 27.6< / td >
< td > bicubic< / td >
< td > 256< / td >
< / tr >
< tr >
< td > cspresnext50< / td >
< td > 80.040 (19.960)< / td >
< td > 94.944 (5.056)< / td >
< td > 20.6< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > resnext50_32x4d< / td >
< td > 79.762 (20.238)< / td >
< td > 94.600 (5.400)< / td >
< td > 25< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > resnext50d_32x4d< / td >
< td > 79.674 (20.326)< / td >
< td > 94.868 (5.132)< / td >
< td > 25.1< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > cspresnet50< / td >
< td > 79.574 (20.426)< / td >
< td > 94.712 (5.288)< / td >
< td > 21.6< / td >
< td > bicubic< / td >
< td > 256< / td >
< / tr >
< tr >
< td > ese_vovnet39b< / td >
< td > 79.320 (20.680)< / td >
< td > 94.710 (5.290)< / td >
< td > 24.6< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > resnetblur50< / td >
< td > 79.290 (20.710)< / td >
< td > 94.632 (5.368)< / td >
< td > 25.6< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > dpn68b< / td >
< td > 79.216 (20.784)< / td >
< td > 94.414 (5.586)< / td >
< td > 12.6< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > resnet50< / td >
< td > 79.038 (20.962)< / td >
< td > 94.390 (5.610)< / td >
< td > 25.6< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > mixnet_l< / td >
< td > 78.976 (21.024< / td >
< td > 94.184 (5.816)< / td >
< td > 7.33< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > efficientnet_b1< / td >
< td > 78.692 (21.308)< / td >
< td > 94.086 (5.914)< / td >
< td > 7.79< / td >
< td > bicubic< / td >
< td > 240< / td >
< / tr >
< tr >
< td > efficientnet_es< / td >
< td > 78.066 (21.934)< / td >
< td > 93.926 (6.074)< / td >
< td > 5.44< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > seresnext26t_32x4d< / td >
< td > 77.998 (22.002)< / td >
< td > 93.708 (6.292)< / td >
< td > 16.8< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > seresnext26tn_32x4d< / td >
< td > 77.986 (22.014)< / td >
< td > 93.746 (6.254)< / td >
< td > 16.8< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > efficientnet_b0< / td >
< td > 77.698 (22.302)< / td >
< td > 93.532 (6.468)< / td >
< td > 5.29< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > seresnext26d_32x4d< / td >
< td > 77.602 (22.398)< / td >
< td > 93.608 (6.392)< / td >
< td > 16.8< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > mobilenetv2_120d< / td >
< td > 77.294 (22.706< / td >
< td > 93.502 (6.498)< / td >
< td > 5.8< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > mixnet_m< / td >
< td > 77.256 (22.744)< / td >
< td > 93.418 (6.582)< / td >
< td > 5.01< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > resnet34d< / td >
< td > 77.116 (22.884)< / td >
< td > 93.382 (6.618)< / td >
< td > 21.8< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > seresnext26_32x4d< / td >
< td > 77.104 (22.896)< / td >
< td > 93.316 (6.684)< / td >
< td > 16.8< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > skresnet34< / td >
< td > 76.912 (23.088)< / td >
< td > 93.322 (6.678)< / td >
< td > 22.2< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > ese_vovnet19b_dw< / td >
< td > 76.798 (23.202)< / td >
< td > 93.268 (6.732)< / td >
< td > 6.5< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > resnet26d< / td >
< td > 76.68 (23.32)< / td >
< td > 93.166 (6.834)< / td >
< td > 16< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > densenetblur121d< / td >
< td > 76.576 (23.424)< / td >
< td > 93.190 (6.810)< / td >
< td > 8.0< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > mobilenetv2_140< / td >
< td > 76.524 (23.476)< / td >
< td > 92.990 (7.010)< / td >
< td > 6.1< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > mixnet_s< / td >
< td > 75.988 (24.012)< / td >
< td > 92.794 (7.206)< / td >
< td > 4.13< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > mobilenetv3_large_100< / td >
< td > 75.766 (24.234)< / td >
< td > 92.542 (7.458)< / td >
< td > 5.5< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > mobilenetv3_rw< / td >
< td > 75.634 (24.366)< / td >
< td > 92.708 (7.292)< / td >
< td > 5.5< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > mnasnet_a1< / td >
< td > 75.448 (24.552)< / td >
< td > 92.604 (7.396)< / td >
< td > 3.89< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > resnet26< / td >
< td > 75.292 (24.708)< / td >
< td > 92.57 (7.43)< / td >
< td > 16< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > fbnetc_100< / td >
< td > 75.124 (24.876)< / td >
< td > 92.386 (7.614)< / td >
< td > 5.6< / td >
< td > bilinear< / td >
< td > 224< / td >
< / tr >
< tr >
< td > resnet34< / td >
< td > 75.110 (24.890)< / td >
< td > 92.284 (7.716)< / td >
< td > 22< / td >
< td > bilinear< / td >
< td > 224< / td >
< / tr >
< tr >
< td > mobilenetv2_110d< / td >
< td > 75.052 (24.948)< / td >
< td > 92.180 (7.820)< / td >
< td > 4.5< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > seresnet34< / td >
< td > 74.808 (25.192)< / td >
< td > 92.124 (7.876)< / td >
< td > 22< / td >
< td > bilinear< / td >
< td > 224< / td >
< / tr >
< tr >
< td > mnasnet_b1< / td >
< td > 74.658 (25.342)< / td >
< td > 92.114 (7.886)< / td >
< td > 4.38< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > spnasnet_100< / td >
< td > 74.084 (25.916)< / td >
< td > 91.818 (8.182)< / td >
< td > 4.42< / td >
< td > bilinear< / td >
< td > 224< / td >
< / tr >
< tr >
< td > skresnet18< / td >
< td > 73.038 (26.962)< / td >
< td > 91.168 (8.832)< / td >
< td > 11.9< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > mobilenetv2_100< / td >
< td > 72.978 (27.022)< / td >
< td > 91.016 (8.984)< / td >
< td > 3.5< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > resnet18d< / td >
< td > 72.260 (27.740)< / td >
< td > 90.696 (9.304)< / td >
< td > 11.7< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< tr >
< td > seresnet18< / td >
< td > 71.742 (28.258)< / td >
< td > 90.334 (9.666)< / td >
< td > 11.8< / td >
< td > bicubic< / td >
< td > 224< / td >
< / tr >
< / tbody >
< / table >
< h2 id = "ported-and-other-weights" > Ported and Other Weights< / h2 >
< p > For weights ported from other deep learning frameworks (Tensorflow, MXNet GluonCV) or copied from other PyTorch sources, please see the full results tables for ImageNet and various OOD test sets at in the < a href = "https://github.com/rwightman/pytorch-image-models/tree/master/results" > results tables< / a > .< / p >
< p > Model code .py files contain links to original sources of models and weights.< / p >
< / article >
< / div >
< / div >
< / main >
< footer class = "md-footer" >
< nav class = "md-footer__inner md-grid" aria-label = "Footer" >
< a href = "../models/xception/" class = "md-footer__link md-footer__link--prev" aria-label = "Previous: Xception" rel = "prev" >
< div class = "md-footer__button md-icon" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z" / > < / svg >
< / div >
< div class = "md-footer__title" >
< div class = "md-ellipsis" >
< span class = "md-footer__direction" >
Previous
< / span >
Xception
< / div >
< / div >
< / a >
< a href = "../scripts/" class = "md-footer__link md-footer__link--next" aria-label = "Next: Scripts" rel = "next" >
< div class = "md-footer__title" >
< div class = "md-ellipsis" >
< span class = "md-footer__direction" >
Next
< / span >
Scripts
< / div >
< / div >
< div class = "md-footer__button md-icon" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z" / > < / svg >
< / div >
< / a >
< / nav >
< div class = "md-footer-meta md-typeset" >
< div class = "md-footer-meta__inner md-grid" >
< div class = "md-copyright" >
Made with
< a href = "https://squidfunk.github.io/mkdocs-material/" target = "_blank" rel = "noopener" >
Material for MkDocs
< / a >
< / div >
< / div >
< / div >
< / footer >
< / div >
< div class = "md-dialog" data-md-component = "dialog" >
< div class = "md-dialog__inner md-typeset" > < / div >
< / div >
< script id = "__config" type = "application/json" > { "base" : ".." , "features" : [ ] , "search" : "../assets/javascripts/workers/search.2a1c317c.min.js" , "translations" : { "clipboard.copied" : "Copied to clipboard" , "clipboard.copy" : "Copy to clipboard" , "search.config.lang" : "en" , "search.config.pipeline" : "trimmer, stopWordFilter" , "search.config.separator" : "[\\s\\-]+" , "search.placeholder" : "Search" , "search.result.more.one" : "1 more on this page" , "search.result.more.other" : "# more on this page" , "search.result.none" : "No matching documents" , "search.result.one" : "1 matching document" , "search.result.other" : "# matching documents" , "search.result.placeholder" : "Type to start searching" , "search.result.term.missing" : "Missing" , "select.version.title" : "Select version" } } < / script >
< script src = "../assets/javascripts/bundle.6e54b5cd.min.js" > < / script >
< script src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-MML-AM_CHTML" > < / script >
< script src = "https://cdnjs.cloudflare.com/ajax/libs/tablesort/5.2.1/tablesort.min.js" > < / script >
< script src = "../javascripts/tables.js" > < / script >
< / body >
< / html >