You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/modelindex/.templates/models/tresnet.md

256 lines
6.5 KiB

# Summary
A **TResNet** is a variant on a [ResNet](https://paperswithcode.com/method/resnet) that aim to boost accuracy while maintaining GPU training and inference efficiency. They contain several design tricks including a SpaceToDepth stem, [Anti-Alias downsampling](https://paperswithcode.com/method/anti-alias-downsampling), In-Place Activated BatchNorm, Blocks selection and [squeeze-and-excitation layers](https://paperswithcode.com/method/squeeze-and-excitation-block).
{% include 'code_snippets.md' %}
## How do I train this model?
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
## Citation
```BibTeX
@misc{ridnik2020tresnet,
title={TResNet: High Performance GPU-Dedicated Architecture},
author={Tal Ridnik and Hussam Lawen and Asaf Noy and Emanuel Ben Baruch and Gilad Sharir and Itamar Friedman},
year={2020},
eprint={2003.13630},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Models:
- Name: tresnet_l
Metadata:
FLOPs: 10873416792
Epochs: 300
Training Data:
- ImageNet
Training Techniques:
- AutoAugment
- Cutout
- Label Smoothing
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA 100 GPUs
Architecture:
- 1x1 Convolution
- Anti-Alias Downsampling
- Convolution
- Global Average Pooling
- InPlace-ABN
- Leaky ReLU
- ReLU
- Residual Connection
- Squeeze-and-Excitation Block
File Size: 224440219
Tasks:
- Image Classification
Training Time: ''
ID: tresnet_l
LR: 0.01
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L267
Config: ''
In Collection: TResNet
- Name: tresnet_l_448
Metadata:
FLOPs: 43488238584
Epochs: 300
Training Data:
- ImageNet
Training Techniques:
- AutoAugment
- Cutout
- Label Smoothing
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA 100 GPUs
Architecture:
- 1x1 Convolution
- Anti-Alias Downsampling
- Convolution
- Global Average Pooling
- InPlace-ABN
- Leaky ReLU
- ReLU
- Residual Connection
- Squeeze-and-Excitation Block
File Size: 224440219
Tasks:
- Image Classification
Training Time: ''
ID: tresnet_l_448
LR: 0.01
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '448'
Weight Decay: 0.0001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L285
Config: ''
In Collection: TResNet
- Name: tresnet_m
Metadata:
FLOPs: 5733048064
Epochs: 300
Training Data:
- ImageNet
Training Techniques:
- AutoAugment
- Cutout
- Label Smoothing
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA 100 GPUs
Architecture:
- 1x1 Convolution
- Anti-Alias Downsampling
- Convolution
- Global Average Pooling
- InPlace-ABN
- Leaky ReLU
- ReLU
- Residual Connection
- Squeeze-and-Excitation Block
File Size: 125861314
Tasks:
- Image Classification
Training Time: < 24 hours
ID: tresnet_m
LR: 0.01
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L261
Config: ''
In Collection: TResNet
- Name: tresnet_m_448
Metadata:
FLOPs: 22929743104
Epochs: 300
Training Data:
- ImageNet
Training Techniques:
- AutoAugment
- Cutout
- Label Smoothing
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA 100 GPUs
Architecture:
- 1x1 Convolution
- Anti-Alias Downsampling
- Convolution
- Global Average Pooling
- InPlace-ABN
- Leaky ReLU
- ReLU
- Residual Connection
- Squeeze-and-Excitation Block
File Size: 125861314
Tasks:
- Image Classification
Training Time: ''
ID: tresnet_m_448
LR: 0.01
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '448'
Weight Decay: 0.0001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L279
Config: ''
In Collection: TResNet
- Name: tresnet_xl
Metadata:
FLOPs: 15162534034
Epochs: 300
Training Data:
- ImageNet
Training Techniques:
- AutoAugment
- Cutout
- Label Smoothing
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA 100 GPUs
Architecture:
- 1x1 Convolution
- Anti-Alias Downsampling
- Convolution
- Global Average Pooling
- InPlace-ABN
- Leaky ReLU
- ReLU
- Residual Connection
- Squeeze-and-Excitation Block
File Size: 314378965
Tasks:
- Image Classification
Training Time: ''
ID: tresnet_xl
LR: 0.01
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L273
Config: ''
In Collection: TResNet
- Name: tresnet_xl_448
Metadata:
FLOPs: 60641712730
Epochs: 300
Training Data:
- ImageNet
Training Techniques:
- AutoAugment
- Cutout
- Label Smoothing
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA 100 GPUs
Architecture:
- 1x1 Convolution
- Anti-Alias Downsampling
- Convolution
- Global Average Pooling
- InPlace-ABN
- Leaky ReLU
- ReLU
- Residual Connection
- Squeeze-and-Excitation Block
File Size: 224440219
Tasks:
- Image Classification
Training Time: ''
ID: tresnet_xl_448
LR: 0.01
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '448'
Weight Decay: 0.0001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L291
Config: ''
In Collection: TResNet
Collections:
- Name: TResNet
Paper:
title: 'TResNet: High Performance GPU-Dedicated Architecture'
url: https://papperswithcode.com//paper/tresnet-high-performance-gpu-dedicated
type: model-index
Type: model-index
-->