You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/modelindex/.templates/models/mobilenet-v2.md

180 lines
5.0 KiB

# Summary
**MobileNetV2** is a convolutional neural network architecture that seeks to perform well on mobile devices. It is based on an [inverted residual structure](https://paperswithcode.com/method/inverted-residual-block) where the residual connections are between the bottleneck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. As a whole, the architecture of MobileNetV2 contains the initial fully convolution layer with 32 filters, followed by 19 residual bottleneck layers.
{% include 'code_snippets.md' %}
## How do I train this model?
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
## Citation
```BibTeX
@article{DBLP:journals/corr/abs-1801-04381,
author = {Mark Sandler and
Andrew G. Howard and
Menglong Zhu and
Andrey Zhmoginov and
Liang{-}Chieh Chen},
title = {Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification,
Detection and Segmentation},
journal = {CoRR},
volume = {abs/1801.04381},
year = {2018},
url = {http://arxiv.org/abs/1801.04381},
archivePrefix = {arXiv},
eprint = {1801.04381},
timestamp = {Tue, 12 Jan 2021 15:30:06 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1801-04381.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<!--
Models:
- Name: mobilenetv2_100
Metadata:
FLOPs: 401920448
Batch Size: 1536
Training Data:
- ImageNet
Training Techniques:
- RMSProp
- Weight Decay
Training Resources: 16x GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Depthwise Separable Convolution
- Dropout
- Inverted Residual Block
- Max Pooling
- ReLU6
- Residual Connection
- Softmax
File Size: 14202571
Tasks:
- Image Classification
ID: mobilenetv2_100
LR: 0.045
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 4.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L955
In Collection: MobileNet V2
- Name: mobilenetv2_110d
Metadata:
FLOPs: 573958832
Batch Size: 1536
Training Data:
- ImageNet
Training Techniques:
- RMSProp
- Weight Decay
Training Resources: 16x GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Depthwise Separable Convolution
- Dropout
- Inverted Residual Block
- Max Pooling
- ReLU6
- Residual Connection
- Softmax
File Size: 18316431
Tasks:
- Image Classification
ID: mobilenetv2_110d
LR: 0.045
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 4.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L969
In Collection: MobileNet V2
- Name: mobilenetv2_120d
Metadata:
FLOPs: 888510048
Batch Size: 1536
Training Data:
- ImageNet
Training Techniques:
- RMSProp
- Weight Decay
Training Resources: 16x GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Depthwise Separable Convolution
- Dropout
- Inverted Residual Block
- Max Pooling
- ReLU6
- Residual Connection
- Softmax
File Size: 23651121
Tasks:
- Image Classification
ID: mobilenetv2_120d
LR: 0.045
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 4.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L977
In Collection: MobileNet V2
- Name: mobilenetv2_140
Metadata:
FLOPs: 770196784
Batch Size: 1536
Training Data:
- ImageNet
Training Techniques:
- RMSProp
- Weight Decay
Training Resources: 16x GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Depthwise Separable Convolution
- Dropout
- Inverted Residual Block
- Max Pooling
- ReLU6
- Residual Connection
- Softmax
File Size: 24673555
Tasks:
- Image Classification
ID: mobilenetv2_140
LR: 0.045
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 4.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L962
In Collection: MobileNet V2
Collections:
- Name: MobileNet V2
Paper:
title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks'
url: https://papperswithcode.com//paper/mobilenetv2-inverted-residuals-and-linear
type: model-index
Type: model-index
-->