You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/modelindex/.templates/models/legacy-se-resnext.md

145 lines
3.7 KiB

# Summary
**SE ResNeXt** is a variant of a [ResNeXt](https://www.paperswithcode.com/method/resnext) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration.
{% include 'code_snippets.md' %}
## How do I train this model?
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
## Citation
```BibTeX
@misc{hu2019squeezeandexcitation,
title={Squeeze-and-Excitation Networks},
author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu},
year={2019},
eprint={1709.01507},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Models:
- Name: legacy_seresnext101_32x4d
Metadata:
FLOPs: 10287698672
Epochs: 100
Batch Size: 1024
Training Data:
- ImageNet
Training Techniques:
- Label Smoothing
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA Titan X GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Global Average Pooling
- Grouped Convolution
- Max Pooling
- ReLU
- ResNeXt Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
File Size: 196466866
Tasks:
- Image Classification
ID: legacy_seresnext101_32x4d
LR: 0.6
Layers: 101
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L462
In Collection: Legacy SE ResNeXt
- Name: legacy_seresnext26_32x4d
Metadata:
FLOPs: 3187342304
Epochs: 100
Batch Size: 1024
Training Data:
- ImageNet
Training Techniques:
- Label Smoothing
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA Titan X GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Global Average Pooling
- Grouped Convolution
- Max Pooling
- ReLU
- ResNeXt Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
File Size: 67346327
Tasks:
- Image Classification
ID: legacy_seresnext26_32x4d
LR: 0.6
Layers: 26
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L448
In Collection: Legacy SE ResNeXt
- Name: legacy_seresnext50_32x4d
Metadata:
FLOPs: 5459954352
Epochs: 100
Batch Size: 1024
Training Data:
- ImageNet
Training Techniques:
- Label Smoothing
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA Titan X GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Global Average Pooling
- Grouped Convolution
- Max Pooling
- ReLU
- ResNeXt Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
File Size: 110559176
Tasks:
- Image Classification
ID: legacy_seresnext50_32x4d
LR: 0.6
Layers: 50
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L455
In Collection: Legacy SE ResNeXt
Collections:
- Name: Legacy SE ResNeXt
Paper:
title: Squeeze-and-Excitation Networks
url: https://papperswithcode.com//paper/squeeze-and-excitation-networks
type: model-index
Type: model-index
-->