You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/scheduler/scheduler.py

114 lines
4.8 KiB

from typing import Dict, Any
import torch
class Scheduler:
""" Parameter Scheduler Base Class
A scheduler base class that can be used to schedule any optimizer parameter groups.
Unlike the builtin PyTorch schedulers, this is intended to be consistently called
* At the END of each epoch, before incrementing the epoch count, to calculate next epoch's value
* At the END of each optimizer update, after incrementing the update count, to calculate next update's value
The schedulers built on this should try to remain as stateless as possible (for simplicity).
This family of schedulers is attempting to avoid the confusion of the meaning of 'last_epoch'
and -1 values for special behaviour. All epoch and update counts must be tracked in the training
code and explicitly passed in to the schedulers on the corresponding step or step_update call.
Based on ideas from:
* https://github.com/pytorch/fairseq/tree/master/fairseq/optim/lr_scheduler
* https://github.com/allenai/allennlp/tree/master/allennlp/training/learning_rate_schedulers
"""
def __init__(self,
optimizer: torch.optim.Optimizer,
param_group_field: str,
noise_range_t=None,
noise_type='normal',
noise_pct=0.67,
noise_std=1.0,
noise_seed=None,
initialize: bool = True) -> None:
self.optimizer = optimizer
self.param_group_field = param_group_field
self._initial_param_group_field = f"initial_{param_group_field}"
if initialize:
for i, group in enumerate(self.optimizer.param_groups):
if param_group_field not in group:
raise KeyError(f"{param_group_field} missing from param_groups[{i}]")
group.setdefault(self._initial_param_group_field, group[param_group_field])
else:
for i, group in enumerate(self.optimizer.param_groups):
if self._initial_param_group_field not in group:
raise KeyError(f"{self._initial_param_group_field} missing from param_groups[{i}]")
self.base_values = [group[self._initial_param_group_field] for group in self.optimizer.param_groups]
self.metric = None # any point to having this for all?
self.noise_range_t = noise_range_t
self.noise_pct = noise_pct
self.noise_type = noise_type
self.noise_std = noise_std
self.noise_seed = noise_seed if noise_seed is not None else 42
self.update_groups(self.base_values)
def state_dict(self) -> Dict[str, Any]:
return {key: value for key, value in self.__dict__.items() if key != 'optimizer'}
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
self.__dict__.update(state_dict)
def get_epoch_values(self, epoch: int):
return None
def get_update_values(self, num_updates: int):
return None
def step(self, epoch: int, metric: float = None) -> None:
self.metric = metric
values = self.get_epoch_values(epoch)
if values is not None:
values = self._add_noise(values, epoch)
self.update_groups(values)
def step_update(self, num_updates: int, metric: float = None):
self.metric = metric
values = self.get_update_values(num_updates)
if values is not None:
values = self._add_noise(values, num_updates)
self.update_groups(values)
def update_groups(self, values):
if not isinstance(values, (list, tuple)):
values = [values] * len(self.optimizer.param_groups)
for param_group, value in zip(self.optimizer.param_groups, values):
param_group[self.param_group_field] = value
def _add_noise(self, lrs, t):
if self._is_apply_noise(t):
noise = self._calculate_noise(t)
lrs = [v + v * noise for v in lrs]
return lrs
def _is_apply_noise(self, t) -> bool:
"""Return True if scheduler in noise range."""
if self.noise_range_t is not None:
if isinstance(self.noise_range_t, (list, tuple)):
apply_noise = self.noise_range_t[0] <= t < self.noise_range_t[1]
else:
apply_noise = t >= self.noise_range_t
return apply_noise
def _calculate_noise(self, t) -> float:
g = torch.Generator()
g.manual_seed(self.noise_seed + t)
if self.noise_type == 'normal':
while True:
# resample if noise out of percent limit, brute force but shouldn't spin much
noise = torch.randn(1, generator=g).item()
if abs(noise) < self.noise_pct:
return noise
else:
noise = 2 * (torch.rand(1, generator=g).item() - 0.5) * self.noise_pct
return noise