|
|
|
import torch
|
|
|
|
import math
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
from torch.nn.init import _calculate_fan_in_and_fan_out
|
|
|
|
|
|
|
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
|
|
|
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
|
|
|
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
|
|
|
def norm_cdf(x):
|
|
|
|
# Computes standard normal cumulative distribution function
|
|
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
|
|
|
|
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
|
|
|
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
|
|
|
"The distribution of values may be incorrect.",
|
|
|
|
stacklevel=2)
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
# Values are generated by using a truncated uniform distribution and
|
|
|
|
# then using the inverse CDF for the normal distribution.
|
|
|
|
# Get upper and lower cdf values
|
|
|
|
l = norm_cdf((a - mean) / std)
|
|
|
|
u = norm_cdf((b - mean) / std)
|
|
|
|
|
|
|
|
# Uniformly fill tensor with values from [l, u], then translate to
|
|
|
|
# [2l-1, 2u-1].
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
|
|
|
|
|
|
|
# Use inverse cdf transform for normal distribution to get truncated
|
|
|
|
# standard normal
|
|
|
|
tensor.erfinv_()
|
|
|
|
|
|
|
|
# Transform to proper mean, std
|
|
|
|
tensor.mul_(std * math.sqrt(2.))
|
|
|
|
tensor.add_(mean)
|
|
|
|
|
|
|
|
# Clamp to ensure it's in the proper range
|
|
|
|
tensor.clamp_(min=a, max=b)
|
|
|
|
return tensor
|
|
|
|
|
|
|
|
|
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
|
|
|
# type: (Tensor, float, float, float, float) -> Tensor
|
|
|
|
r"""Fills the input Tensor with values drawn from a truncated
|
|
|
|
normal distribution. The values are effectively drawn from the
|
|
|
|
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
|
|
|
with values outside :math:`[a, b]` redrawn until they are within
|
|
|
|
the bounds. The method used for generating the random values works
|
|
|
|
best when :math:`a \leq \text{mean} \leq b`.
|
|
|
|
Args:
|
|
|
|
tensor: an n-dimensional `torch.Tensor`
|
|
|
|
mean: the mean of the normal distribution
|
|
|
|
std: the standard deviation of the normal distribution
|
|
|
|
a: the minimum cutoff value
|
|
|
|
b: the maximum cutoff value
|
|
|
|
Examples:
|
|
|
|
>>> w = torch.empty(3, 5)
|
|
|
|
>>> nn.init.trunc_normal_(w)
|
|
|
|
"""
|
|
|
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
|
|
|
|
|
|
|
|
|
|
|
def variance_scaling_(tensor, scale=1.0, mode='fan_in', distribution='normal'):
|
|
|
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
|
|
|
if mode == 'fan_in':
|
|
|
|
denom = fan_in
|
|
|
|
elif mode == 'fan_out':
|
|
|
|
denom = fan_out
|
|
|
|
elif mode == 'fan_avg':
|
|
|
|
denom = (fan_in + fan_out) / 2
|
|
|
|
|
|
|
|
variance = scale / denom
|
|
|
|
|
|
|
|
if distribution == "truncated_normal":
|
|
|
|
# constant is stddev of standard normal truncated to (-2, 2)
|
|
|
|
trunc_normal_(tensor, std=math.sqrt(variance) / .87962566103423978)
|
|
|
|
elif distribution == "normal":
|
|
|
|
tensor.normal_(std=math.sqrt(variance))
|
|
|
|
elif distribution == "uniform":
|
|
|
|
bound = math.sqrt(3 * variance)
|
|
|
|
tensor.uniform_(-bound, bound)
|
|
|
|
else:
|
|
|
|
raise ValueError(f"invalid distribution {distribution}")
|
|
|
|
|
|
|
|
|
|
|
|
def lecun_normal_(tensor):
|
|
|
|
variance_scaling_(tensor, mode='fan_in', distribution='truncated_normal')
|