You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/scheduler/plateau_lr.py

61 lines
1.9 KiB

import torch
from .scheduler import Scheduler
class PlateauLRScheduler(Scheduler):
"""Decay the LR by a factor every time the validation loss plateaus."""
def __init__(self,
optimizer,
decay_rate=0.1,
patience_t=10,
verbose=True,
threshold=1e-4,
cooldown_t=0,
warmup_t=0,
warmup_lr_init=0,
lr_min=0,
mode='min',
initialize=True,
):
super().__init__(optimizer, 'lr', initialize=initialize)
self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer,
patience=patience_t,
factor=decay_rate,
verbose=verbose,
threshold=threshold,
cooldown=cooldown_t,
mode=mode,
min_lr=lr_min
)
self.warmup_t = warmup_t
self.warmup_lr_init = warmup_lr_init
if self.warmup_t:
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values]
super().update_groups(self.warmup_lr_init)
else:
self.warmup_steps = [1 for _ in self.base_values]
def state_dict(self):
return {
'best': self.lr_scheduler.best,
'last_epoch': self.lr_scheduler.last_epoch,
}
def load_state_dict(self, state_dict):
self.lr_scheduler.best = state_dict['best']
if 'last_epoch' in state_dict:
self.lr_scheduler.last_epoch = state_dict['last_epoch']
# override the base class step fn completely
def step(self, epoch, metric=None):
if epoch <= self.warmup_t:
lrs = [self.warmup_lr_init + epoch * s for s in self.warmup_steps]
super().update_groups(lrs)
else:
self.lr_scheduler.step(metric, epoch)