|
|
|
import torch
|
|
|
|
|
|
|
|
from .scheduler import Scheduler
|
|
|
|
|
|
|
|
|
|
|
|
class PlateauLRScheduler(Scheduler):
|
|
|
|
"""Decay the LR by a factor every time the validation loss plateaus."""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
optimizer,
|
|
|
|
decay_rate=0.1,
|
|
|
|
patience_t=10,
|
|
|
|
verbose=True,
|
|
|
|
threshold=1e-4,
|
|
|
|
cooldown_t=0,
|
|
|
|
warmup_t=0,
|
|
|
|
warmup_lr_init=0,
|
|
|
|
lr_min=0,
|
|
|
|
mode='min',
|
|
|
|
initialize=True,
|
|
|
|
):
|
|
|
|
super().__init__(optimizer, 'lr', initialize=initialize)
|
|
|
|
|
|
|
|
self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
|
|
|
self.optimizer,
|
|
|
|
patience=patience_t,
|
|
|
|
factor=decay_rate,
|
|
|
|
verbose=verbose,
|
|
|
|
threshold=threshold,
|
|
|
|
cooldown=cooldown_t,
|
|
|
|
mode=mode,
|
|
|
|
min_lr=lr_min
|
|
|
|
)
|
|
|
|
|
|
|
|
self.warmup_t = warmup_t
|
|
|
|
self.warmup_lr_init = warmup_lr_init
|
|
|
|
if self.warmup_t:
|
|
|
|
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values]
|
|
|
|
super().update_groups(self.warmup_lr_init)
|
|
|
|
else:
|
|
|
|
self.warmup_steps = [1 for _ in self.base_values]
|
|
|
|
|
|
|
|
def state_dict(self):
|
|
|
|
return {
|
|
|
|
'best': self.lr_scheduler.best,
|
|
|
|
'last_epoch': self.lr_scheduler.last_epoch,
|
|
|
|
}
|
|
|
|
|
|
|
|
def load_state_dict(self, state_dict):
|
|
|
|
self.lr_scheduler.best = state_dict['best']
|
|
|
|
if 'last_epoch' in state_dict:
|
|
|
|
self.lr_scheduler.last_epoch = state_dict['last_epoch']
|
|
|
|
|
|
|
|
# override the base class step fn completely
|
|
|
|
def step(self, epoch, metric=None):
|
|
|
|
if epoch <= self.warmup_t:
|
|
|
|
lrs = [self.warmup_lr_init + epoch * s for s in self.warmup_steps]
|
|
|
|
super().update_groups(lrs)
|
|
|
|
else:
|
|
|
|
self.lr_scheduler.step(metric, epoch)
|