|
|
|
""" Pytorch Inception-Resnet-V2 implementation
|
|
|
|
Sourced from https://github.com/Cadene/tensorflow-model-zoo.torch (MIT License) which is
|
|
|
|
based upon Google's Tensorflow implementation and pretrained weights (Apache 2.0 License)
|
|
|
|
"""
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
|
|
|
from .features import FeatureNet
|
|
|
|
from .helpers import load_pretrained
|
|
|
|
from .layers import SelectAdaptivePool2d
|
|
|
|
from .registry import register_model
|
|
|
|
|
|
|
|
__all__ = ['InceptionResnetV2']
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
# ported from http://download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar.gz
|
|
|
|
'inception_resnet_v2': {
|
|
|
|
'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/inception_resnet_v2-940b1cd6.pth',
|
|
|
|
'num_classes': 1001, 'input_size': (3, 299, 299), 'pool_size': (8, 8),
|
|
|
|
'crop_pct': 0.8975, 'interpolation': 'bicubic',
|
|
|
|
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
|
|
|
'first_conv': 'conv2d_1a.conv', 'classifier': 'classif',
|
|
|
|
},
|
|
|
|
# ported from http://download.tensorflow.org/models/ens_adv_inception_resnet_v2_2017_08_18.tar.gz
|
|
|
|
'ens_adv_inception_resnet_v2': {
|
|
|
|
'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ens_adv_inception_resnet_v2-2592a550.pth',
|
|
|
|
'num_classes': 1001, 'input_size': (3, 299, 299), 'pool_size': (8, 8),
|
|
|
|
'crop_pct': 0.8975, 'interpolation': 'bicubic',
|
|
|
|
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
|
|
|
'first_conv': 'conv2d_1a.conv', 'classifier': 'classif',
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class BasicConv2d(nn.Module):
|
|
|
|
def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0):
|
|
|
|
super(BasicConv2d, self).__init__()
|
|
|
|
self.conv = nn.Conv2d(
|
|
|
|
in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
|
|
|
|
self.bn = nn.BatchNorm2d(out_planes, eps=.001)
|
|
|
|
self.relu = nn.ReLU(inplace=False)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.conv(x)
|
|
|
|
x = self.bn(x)
|
|
|
|
x = self.relu(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class Mixed_5b(nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super(Mixed_5b, self).__init__()
|
|
|
|
|
|
|
|
self.branch0 = BasicConv2d(192, 96, kernel_size=1, stride=1)
|
|
|
|
|
|
|
|
self.branch1 = nn.Sequential(
|
|
|
|
BasicConv2d(192, 48, kernel_size=1, stride=1),
|
|
|
|
BasicConv2d(48, 64, kernel_size=5, stride=1, padding=2)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.branch2 = nn.Sequential(
|
|
|
|
BasicConv2d(192, 64, kernel_size=1, stride=1),
|
|
|
|
BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1),
|
|
|
|
BasicConv2d(96, 96, kernel_size=3, stride=1, padding=1)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.branch3 = nn.Sequential(
|
|
|
|
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
|
|
|
|
BasicConv2d(192, 64, kernel_size=1, stride=1)
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x0 = self.branch0(x)
|
|
|
|
x1 = self.branch1(x)
|
|
|
|
x2 = self.branch2(x)
|
|
|
|
x3 = self.branch3(x)
|
|
|
|
out = torch.cat((x0, x1, x2, x3), 1)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class Block35(nn.Module):
|
|
|
|
def __init__(self, scale=1.0):
|
|
|
|
super(Block35, self).__init__()
|
|
|
|
|
|
|
|
self.scale = scale
|
|
|
|
|
|
|
|
self.branch0 = BasicConv2d(320, 32, kernel_size=1, stride=1)
|
|
|
|
|
|
|
|
self.branch1 = nn.Sequential(
|
|
|
|
BasicConv2d(320, 32, kernel_size=1, stride=1),
|
|
|
|
BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.branch2 = nn.Sequential(
|
|
|
|
BasicConv2d(320, 32, kernel_size=1, stride=1),
|
|
|
|
BasicConv2d(32, 48, kernel_size=3, stride=1, padding=1),
|
|
|
|
BasicConv2d(48, 64, kernel_size=3, stride=1, padding=1)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.conv2d = nn.Conv2d(128, 320, kernel_size=1, stride=1)
|
|
|
|
self.relu = nn.ReLU(inplace=False)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x0 = self.branch0(x)
|
|
|
|
x1 = self.branch1(x)
|
|
|
|
x2 = self.branch2(x)
|
|
|
|
out = torch.cat((x0, x1, x2), 1)
|
|
|
|
out = self.conv2d(out)
|
|
|
|
out = out * self.scale + x
|
|
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class Mixed_6a(nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super(Mixed_6a, self).__init__()
|
|
|
|
|
|
|
|
self.branch0 = BasicConv2d(320, 384, kernel_size=3, stride=2)
|
|
|
|
|
|
|
|
self.branch1 = nn.Sequential(
|
|
|
|
BasicConv2d(320, 256, kernel_size=1, stride=1),
|
|
|
|
BasicConv2d(256, 256, kernel_size=3, stride=1, padding=1),
|
|
|
|
BasicConv2d(256, 384, kernel_size=3, stride=2)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.branch2 = nn.MaxPool2d(3, stride=2)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x0 = self.branch0(x)
|
|
|
|
x1 = self.branch1(x)
|
|
|
|
x2 = self.branch2(x)
|
|
|
|
out = torch.cat((x0, x1, x2), 1)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class Block17(nn.Module):
|
|
|
|
def __init__(self, scale=1.0):
|
|
|
|
super(Block17, self).__init__()
|
|
|
|
|
|
|
|
self.scale = scale
|
|
|
|
|
|
|
|
self.branch0 = BasicConv2d(1088, 192, kernel_size=1, stride=1)
|
|
|
|
|
|
|
|
self.branch1 = nn.Sequential(
|
|
|
|
BasicConv2d(1088, 128, kernel_size=1, stride=1),
|
|
|
|
BasicConv2d(128, 160, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
|
|
|
BasicConv2d(160, 192, kernel_size=(7, 1), stride=1, padding=(3, 0))
|
|
|
|
)
|
|
|
|
|
|
|
|
self.conv2d = nn.Conv2d(384, 1088, kernel_size=1, stride=1)
|
|
|
|
self.relu = nn.ReLU(inplace=False)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x0 = self.branch0(x)
|
|
|
|
x1 = self.branch1(x)
|
|
|
|
out = torch.cat((x0, x1), 1)
|
|
|
|
out = self.conv2d(out)
|
|
|
|
out = out * self.scale + x
|
|
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class Mixed_7a(nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super(Mixed_7a, self).__init__()
|
|
|
|
|
|
|
|
self.branch0 = nn.Sequential(
|
|
|
|
BasicConv2d(1088, 256, kernel_size=1, stride=1),
|
|
|
|
BasicConv2d(256, 384, kernel_size=3, stride=2)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.branch1 = nn.Sequential(
|
|
|
|
BasicConv2d(1088, 256, kernel_size=1, stride=1),
|
|
|
|
BasicConv2d(256, 288, kernel_size=3, stride=2)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.branch2 = nn.Sequential(
|
|
|
|
BasicConv2d(1088, 256, kernel_size=1, stride=1),
|
|
|
|
BasicConv2d(256, 288, kernel_size=3, stride=1, padding=1),
|
|
|
|
BasicConv2d(288, 320, kernel_size=3, stride=2)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.branch3 = nn.MaxPool2d(3, stride=2)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x0 = self.branch0(x)
|
|
|
|
x1 = self.branch1(x)
|
|
|
|
x2 = self.branch2(x)
|
|
|
|
x3 = self.branch3(x)
|
|
|
|
out = torch.cat((x0, x1, x2, x3), 1)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class Block8(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, scale=1.0, no_relu=False):
|
|
|
|
super(Block8, self).__init__()
|
|
|
|
|
|
|
|
self.scale = scale
|
|
|
|
|
|
|
|
self.branch0 = BasicConv2d(2080, 192, kernel_size=1, stride=1)
|
|
|
|
|
|
|
|
self.branch1 = nn.Sequential(
|
|
|
|
BasicConv2d(2080, 192, kernel_size=1, stride=1),
|
|
|
|
BasicConv2d(192, 224, kernel_size=(1, 3), stride=1, padding=(0, 1)),
|
|
|
|
BasicConv2d(224, 256, kernel_size=(3, 1), stride=1, padding=(1, 0))
|
|
|
|
)
|
|
|
|
|
|
|
|
self.conv2d = nn.Conv2d(448, 2080, kernel_size=1, stride=1)
|
|
|
|
self.relu = None if no_relu else nn.ReLU(inplace=False)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x0 = self.branch0(x)
|
|
|
|
x1 = self.branch1(x)
|
|
|
|
out = torch.cat((x0, x1), 1)
|
|
|
|
out = self.conv2d(out)
|
|
|
|
out = out * self.scale + x
|
|
|
|
if self.relu is not None:
|
|
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class InceptionResnetV2(nn.Module):
|
|
|
|
def __init__(self, num_classes=1001, in_chans=3, drop_rate=0., global_pool='avg'):
|
|
|
|
super(InceptionResnetV2, self).__init__()
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.num_features = 1536
|
|
|
|
|
|
|
|
self.conv2d_1a = BasicConv2d(in_chans, 32, kernel_size=3, stride=2)
|
|
|
|
self.conv2d_2a = BasicConv2d(32, 32, kernel_size=3, stride=1)
|
|
|
|
self.conv2d_2b = BasicConv2d(32, 64, kernel_size=3, stride=1, padding=1)
|
|
|
|
self.feature_info = [dict(num_chs=64, reduction=2, module='conv2d_2b')]
|
|
|
|
|
|
|
|
self.maxpool_3a = nn.MaxPool2d(3, stride=2)
|
|
|
|
self.conv2d_3b = BasicConv2d(64, 80, kernel_size=1, stride=1)
|
|
|
|
self.conv2d_4a = BasicConv2d(80, 192, kernel_size=3, stride=1)
|
|
|
|
self.feature_info += [dict(num_chs=192, reduction=4, module='conv2d_4a')]
|
|
|
|
|
|
|
|
self.maxpool_5a = nn.MaxPool2d(3, stride=2)
|
|
|
|
self.mixed_5b = Mixed_5b()
|
|
|
|
self.repeat = nn.Sequential(
|
|
|
|
Block35(scale=0.17),
|
|
|
|
Block35(scale=0.17),
|
|
|
|
Block35(scale=0.17),
|
|
|
|
Block35(scale=0.17),
|
|
|
|
Block35(scale=0.17),
|
|
|
|
Block35(scale=0.17),
|
|
|
|
Block35(scale=0.17),
|
|
|
|
Block35(scale=0.17),
|
|
|
|
Block35(scale=0.17),
|
|
|
|
Block35(scale=0.17)
|
|
|
|
)
|
|
|
|
self.feature_info += [dict(num_chs=320, reduction=8, module='repeat')]
|
|
|
|
|
|
|
|
self.mixed_6a = Mixed_6a()
|
|
|
|
self.repeat_1 = nn.Sequential(
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10),
|
|
|
|
Block17(scale=0.10)
|
|
|
|
)
|
|
|
|
self.feature_info += [dict(num_chs=1088, reduction=16, module='repeat_1')]
|
|
|
|
|
|
|
|
self.mixed_7a = Mixed_7a()
|
|
|
|
self.repeat_2 = nn.Sequential(
|
|
|
|
Block8(scale=0.20),
|
|
|
|
Block8(scale=0.20),
|
|
|
|
Block8(scale=0.20),
|
|
|
|
Block8(scale=0.20),
|
|
|
|
Block8(scale=0.20),
|
|
|
|
Block8(scale=0.20),
|
|
|
|
Block8(scale=0.20),
|
|
|
|
Block8(scale=0.20),
|
|
|
|
Block8(scale=0.20)
|
|
|
|
)
|
|
|
|
self.block8 = Block8(no_relu=True)
|
|
|
|
self.conv2d_7b = BasicConv2d(2080, self.num_features, kernel_size=1, stride=1)
|
|
|
|
self.feature_info += [dict(num_chs=self.num_features, reduction=32, module='conv2d_7b')]
|
|
|
|
|
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
# NOTE some variants/checkpoints for this model may have 'last_linear' as the name for the FC
|
|
|
|
self.classif = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
|
|
|
|
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.classif
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
self.num_classes = num_classes
|
|
|
|
if num_classes:
|
|
|
|
num_features = self.num_features * self.global_pool.feat_mult()
|
|
|
|
self.classif = nn.Linear(num_features, num_classes)
|
|
|
|
else:
|
|
|
|
self.classif = nn.Identity()
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
x = self.conv2d_1a(x)
|
|
|
|
x = self.conv2d_2a(x)
|
|
|
|
x = self.conv2d_2b(x)
|
|
|
|
x = self.maxpool_3a(x)
|
|
|
|
x = self.conv2d_3b(x)
|
|
|
|
x = self.conv2d_4a(x)
|
|
|
|
x = self.maxpool_5a(x)
|
|
|
|
x = self.mixed_5b(x)
|
|
|
|
x = self.repeat(x)
|
|
|
|
x = self.mixed_6a(x)
|
|
|
|
x = self.repeat_1(x)
|
|
|
|
x = self.mixed_7a(x)
|
|
|
|
x = self.repeat_2(x)
|
|
|
|
x = self.block8(x)
|
|
|
|
x = self.conv2d_7b(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
x = self.global_pool(x).flatten(1)
|
|
|
|
if self.drop_rate > 0:
|
|
|
|
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
|
|
|
x = self.classif(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def _inception_resnet_v2(variant, pretrained=False, **kwargs):
|
|
|
|
load_strict, features, out_indices = True, False, None
|
|
|
|
if kwargs.pop('features_only', False):
|
|
|
|
load_strict, features, out_indices = False, True, kwargs.pop('out_indices', (0, 1, 2, 3, 4))
|
|
|
|
kwargs.pop('num_classes', 0)
|
|
|
|
model = InceptionResnetV2(**kwargs)
|
|
|
|
model.default_cfg = default_cfgs[variant]
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(
|
|
|
|
model,
|
|
|
|
num_classes=kwargs.get('num_classes', 0), in_chans=kwargs.get('in_chans', 3), strict=load_strict)
|
|
|
|
if features:
|
|
|
|
model = FeatureNet(model, out_indices)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def inception_resnet_v2(pretrained=False, **kwargs):
|
|
|
|
r"""InceptionResnetV2 model architecture from the
|
|
|
|
`"InceptionV4, Inception-ResNet..." <https://arxiv.org/abs/1602.07261>` paper.
|
|
|
|
"""
|
|
|
|
return _inception_resnet_v2('inception_resnet_v2', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def ens_adv_inception_resnet_v2(pretrained=False, **kwargs):
|
|
|
|
r""" Ensemble Adversarially trained InceptionResnetV2 model architecture
|
|
|
|
As per https://arxiv.org/abs/1705.07204 and
|
|
|
|
https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models.
|
|
|
|
"""
|
|
|
|
return _inception_resnet_v2('ens_adv_inception_resnet_v2', pretrained=pretrained, **kwargs)
|