|
|
|
""" Plateau Scheduler
|
|
|
|
|
|
|
|
Adapts PyTorch plateau scheduler and allows application of noise, warmup.
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
|
|
"""
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from .scheduler import Scheduler
|
|
|
|
|
|
|
|
|
|
|
|
class PlateauLRScheduler(Scheduler):
|
|
|
|
"""Decay the LR by a factor every time the validation loss plateaus."""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
optimizer,
|
|
|
|
decay_rate=0.1,
|
|
|
|
patience_t=10,
|
|
|
|
verbose=True,
|
|
|
|
threshold=1e-4,
|
|
|
|
cooldown_t=0,
|
|
|
|
warmup_t=0,
|
|
|
|
warmup_lr_init=0,
|
|
|
|
lr_min=0,
|
|
|
|
mode='max',
|
|
|
|
noise_range_t=None,
|
|
|
|
noise_type='normal',
|
|
|
|
noise_pct=0.67,
|
|
|
|
noise_std=1.0,
|
|
|
|
noise_seed=None,
|
|
|
|
initialize=True,
|
|
|
|
):
|
|
|
|
super().__init__(optimizer, 'lr', initialize=initialize)
|
|
|
|
|
|
|
|
self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
|
|
|
self.optimizer,
|
|
|
|
patience=patience_t,
|
|
|
|
factor=decay_rate,
|
|
|
|
verbose=verbose,
|
|
|
|
threshold=threshold,
|
|
|
|
cooldown=cooldown_t,
|
|
|
|
mode=mode,
|
|
|
|
min_lr=lr_min
|
|
|
|
)
|
|
|
|
|
|
|
|
self.noise_range_t = noise_range_t
|
|
|
|
self.noise_pct = noise_pct
|
|
|
|
self.noise_type = noise_type
|
|
|
|
self.noise_std = noise_std
|
|
|
|
self.noise_seed = noise_seed if noise_seed is not None else 42
|
|
|
|
self.warmup_t = warmup_t
|
|
|
|
self.warmup_lr_init = warmup_lr_init
|
|
|
|
if self.warmup_t:
|
|
|
|
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values]
|
|
|
|
super().update_groups(self.warmup_lr_init)
|
|
|
|
else:
|
|
|
|
self.warmup_steps = [1 for _ in self.base_values]
|
|
|
|
self.restore_lr = None
|
|
|
|
|
|
|
|
def state_dict(self):
|
|
|
|
return {
|
|
|
|
'best': self.lr_scheduler.best,
|
|
|
|
'last_epoch': self.lr_scheduler.last_epoch,
|
|
|
|
}
|
|
|
|
|
|
|
|
def load_state_dict(self, state_dict):
|
|
|
|
self.lr_scheduler.best = state_dict['best']
|
|
|
|
if 'last_epoch' in state_dict:
|
|
|
|
self.lr_scheduler.last_epoch = state_dict['last_epoch']
|
|
|
|
|
|
|
|
# override the base class step fn completely
|
|
|
|
def step(self, epoch, metric=None):
|
|
|
|
if epoch <= self.warmup_t:
|
|
|
|
lrs = [self.warmup_lr_init + epoch * s for s in self.warmup_steps]
|
|
|
|
super().update_groups(lrs)
|
|
|
|
else:
|
|
|
|
if self.restore_lr is not None:
|
|
|
|
# restore actual LR from before our last noise perturbation before stepping base
|
|
|
|
for i, param_group in enumerate(self.optimizer.param_groups):
|
|
|
|
param_group['lr'] = self.restore_lr[i]
|
|
|
|
self.restore_lr = None
|
|
|
|
|
|
|
|
self.lr_scheduler.step(metric, epoch) # step the base scheduler
|
|
|
|
|
|
|
|
if self._is_apply_noise(epoch):
|
|
|
|
self._apply_noise(epoch)
|
|
|
|
|
|
|
|
|
|
|
|
def _apply_noise(self, epoch):
|
|
|
|
noise = self._calculate_noise(epoch)
|
|
|
|
|
|
|
|
# apply the noise on top of previous LR, cache the old value so we can restore for normal
|
|
|
|
# stepping of base scheduler
|
|
|
|
restore_lr = []
|
|
|
|
for i, param_group in enumerate(self.optimizer.param_groups):
|
|
|
|
old_lr = float(param_group['lr'])
|
|
|
|
restore_lr.append(old_lr)
|
|
|
|
new_lr = old_lr + old_lr * noise
|
|
|
|
param_group['lr'] = new_lr
|
|
|
|
self.restore_lr = restore_lr
|