You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
5.0 KiB
125 lines
5.0 KiB
2 years ago
|
""" Adan Optimizer
|
||
|
|
||
|
Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J]. arXiv preprint arXiv:2208.06677, 2022.
|
||
|
https://arxiv.org/abs/2208.06677
|
||
|
|
||
|
Implementation adapted from https://github.com/sail-sg/Adan
|
||
|
"""
|
||
|
|
||
|
import math
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from torch.optim import Optimizer
|
||
|
|
||
|
|
||
|
class Adan(Optimizer):
|
||
|
"""
|
||
|
Implements a pytorch variant of Adan
|
||
|
Adan was proposed in
|
||
|
Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J]. arXiv preprint arXiv:2208.06677, 2022.
|
||
|
https://arxiv.org/abs/2208.06677
|
||
|
Arguments:
|
||
|
params (iterable): iterable of parameters to optimize or dicts defining parameter groups.
|
||
|
lr (float, optional): learning rate. (default: 1e-3)
|
||
|
betas (Tuple[float, float, flot], optional): coefficients used for computing
|
||
|
running averages of gradient and its norm. (default: (0.98, 0.92, 0.99))
|
||
|
eps (float, optional): term added to the denominator to improve
|
||
|
numerical stability. (default: 1e-8)
|
||
|
weight_decay (float, optional): decoupled weight decay (L2 penalty) (default: 0)
|
||
|
no_prox (bool): how to perform the decoupled weight decay (default: False)
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
params,
|
||
|
lr=1e-3,
|
||
|
betas=(0.98, 0.92, 0.99),
|
||
|
eps=1e-8,
|
||
|
weight_decay=0.0,
|
||
|
no_prox=False,
|
||
|
):
|
||
|
if not 0.0 <= lr:
|
||
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
||
|
if not 0.0 <= eps:
|
||
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||
|
if not 0.0 <= betas[0] < 1.0:
|
||
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||
|
if not 0.0 <= betas[1] < 1.0:
|
||
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||
|
if not 0.0 <= betas[2] < 1.0:
|
||
|
raise ValueError("Invalid beta parameter at index 2: {}".format(betas[2]))
|
||
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, no_prox=no_prox)
|
||
|
super(Adan, self).__init__(params, defaults)
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def restart_opt(self):
|
||
|
for group in self.param_groups:
|
||
|
group['step'] = 0
|
||
|
for p in group['params']:
|
||
|
if p.requires_grad:
|
||
|
state = self.state[p]
|
||
|
# State initialization
|
||
|
|
||
|
# Exponential moving average of gradient values
|
||
|
state['exp_avg'] = torch.zeros_like(p)
|
||
|
# Exponential moving average of squared gradient values
|
||
|
state['exp_avg_sq'] = torch.zeros_like(p)
|
||
|
# Exponential moving average of gradient difference
|
||
|
state['exp_avg_diff'] = torch.zeros_like(p)
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def step(self, closure=None):
|
||
|
""" Performs a single optimization step.
|
||
|
"""
|
||
|
loss = None
|
||
|
if closure is not None:
|
||
|
with torch.enable_grad():
|
||
|
loss = closure()
|
||
|
|
||
|
for group in self.param_groups:
|
||
|
beta1, beta2, beta3 = group['betas']
|
||
|
# assume same step across group now to simplify things
|
||
|
# per parameter step can be easily support by making it tensor, or pass list into kernel
|
||
|
if 'step' in group:
|
||
|
group['step'] += 1
|
||
|
else:
|
||
|
group['step'] = 1
|
||
|
|
||
|
bias_correction1 = 1.0 - beta1 ** group['step']
|
||
|
bias_correction2 = 1.0 - beta2 ** group['step']
|
||
|
bias_correction3 = 1.0 - beta3 ** group['step']
|
||
|
|
||
|
for p in group['params']:
|
||
|
if p.grad is None:
|
||
|
continue
|
||
|
grad = p.grad
|
||
|
|
||
|
state = self.state[p]
|
||
|
if len(state) == 0:
|
||
|
state['exp_avg'] = torch.zeros_like(p)
|
||
|
state['exp_avg_diff'] = torch.zeros_like(p)
|
||
|
state['exp_avg_sq'] = torch.zeros_like(p)
|
||
|
state['pre_grad'] = grad.clone()
|
||
|
|
||
|
exp_avg, exp_avg_sq, exp_avg_diff = state['exp_avg'], state['exp_avg_diff'], state['exp_avg_sq']
|
||
|
grad_diff = grad - state['pre_grad']
|
||
|
|
||
|
exp_avg.lerp_(grad, 1. - beta1) # m_t
|
||
|
exp_avg_diff.lerp_(grad_diff, 1. - beta2) # diff_t (v)
|
||
|
update = grad + beta2 * grad_diff
|
||
|
exp_avg_sq.mul_(beta3).addcmul_(update, update, value=1. - beta3) # n_t
|
||
|
|
||
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction3)).add_(group['eps'])
|
||
|
update = (exp_avg / bias_correction1 + beta2 * exp_avg_diff / bias_correction2).div_(denom)
|
||
|
if group['no_prox']:
|
||
|
p.data.mul_(1 - group['lr'] * group['weight_decay'])
|
||
|
p.add_(update, alpha=-group['lr'])
|
||
|
else:
|
||
|
p.add_(update, alpha=-group['lr'])
|
||
|
p.data.div_(1 + group['lr'] * group['weight_decay'])
|
||
|
|
||
|
state['pre_grad'].copy_(grad)
|
||
|
|
||
|
return loss
|