|
|
|
""" PyTorch Feature Extraction Helpers
|
|
|
|
|
|
|
|
A collection of classes, functions, modules to help extract features from models
|
|
|
|
and provide a common interface for describing them.
|
|
|
|
|
|
|
|
Hacked together by Ross Wightman
|
|
|
|
"""
|
|
|
|
from collections import OrderedDict, defaultdict
|
|
|
|
from copy import deepcopy
|
|
|
|
from functools import partial
|
|
|
|
from typing import Dict, List, Tuple, Any
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
class FeatureInfo:
|
|
|
|
|
|
|
|
def __init__(self, feature_info: List[Dict], out_indices: Tuple[int]):
|
|
|
|
prev_reduction = 1
|
|
|
|
for fi in feature_info:
|
|
|
|
# sanity check the mandatory fields, there may be additional fields depending on the model
|
|
|
|
assert 'num_chs' in fi and fi['num_chs'] > 0
|
|
|
|
assert 'reduction' in fi and fi['reduction'] >= prev_reduction
|
|
|
|
prev_reduction = fi['reduction']
|
|
|
|
assert 'module' in fi
|
|
|
|
self.out_indices = out_indices
|
|
|
|
self.info = feature_info
|
|
|
|
|
|
|
|
def from_other(self, out_indices: Tuple[int]):
|
|
|
|
return FeatureInfo(deepcopy(self.info), out_indices)
|
|
|
|
|
|
|
|
def channels(self, idx=None):
|
|
|
|
""" feature channels accessor
|
|
|
|
if idx == None, returns feature channel count at each output index
|
|
|
|
if idx is an integer, return feature channel count for that feature module index
|
|
|
|
"""
|
|
|
|
if isinstance(idx, int):
|
|
|
|
return self.info[idx]['num_chs']
|
|
|
|
return [self.info[i]['num_chs'] for i in self.out_indices]
|
|
|
|
|
|
|
|
def reduction(self, idx=None):
|
|
|
|
""" feature reduction (output stride) accessor
|
|
|
|
if idx == None, returns feature reduction factor at each output index
|
|
|
|
if idx is an integer, return feature channel count at that feature module index
|
|
|
|
"""
|
|
|
|
if isinstance(idx, int):
|
|
|
|
return self.info[idx]['reduction']
|
|
|
|
return [self.info[i]['reduction'] for i in self.out_indices]
|
|
|
|
|
|
|
|
def module_name(self, idx=None):
|
|
|
|
""" feature module name accessor
|
|
|
|
if idx == None, returns feature module name at each output index
|
|
|
|
if idx is an integer, return feature module name at that feature module index
|
|
|
|
"""
|
|
|
|
if isinstance(idx, int):
|
|
|
|
return self.info[idx]['module']
|
|
|
|
return [self.info[i]['module'] for i in self.out_indices]
|
|
|
|
|
|
|
|
def get_by_key(self, idx=None, keys=None):
|
|
|
|
""" return info dicts for specified keys (or all if None) at specified idx (or out_indices if None)
|
|
|
|
"""
|
|
|
|
if isinstance(idx, int):
|
|
|
|
return self.info[idx] if keys is None else {k: self.info[idx][k] for k in keys}
|
|
|
|
if keys is None:
|
|
|
|
return [self.info[i] for i in self.out_indices]
|
|
|
|
else:
|
|
|
|
return [{k: self.info[i][k] for k in keys} for i in self.out_indices]
|
|
|
|
|
|
|
|
def __getitem__(self, item):
|
|
|
|
return self.info[item]
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.info)
|
|
|
|
|
|
|
|
|
|
|
|
class FeatureHooks:
|
|
|
|
|
|
|
|
def __init__(self, hooks, named_modules, out_as_dict=False, out_map=None, default_hook_type='forward'):
|
|
|
|
# setup feature hooks
|
|
|
|
modules = {k: v for k, v in named_modules}
|
|
|
|
for i, h in enumerate(hooks):
|
|
|
|
hook_name = h['module']
|
|
|
|
m = modules[hook_name]
|
|
|
|
hook_id = out_map[i] if out_map else hook_name
|
|
|
|
hook_fn = partial(self._collect_output_hook, hook_id)
|
|
|
|
hook_type = h['hook_type'] if 'hook_type' in h else default_hook_type
|
|
|
|
if hook_type == 'forward_pre':
|
|
|
|
m.register_forward_pre_hook(hook_fn)
|
|
|
|
elif hook_type == 'forward':
|
|
|
|
m.register_forward_hook(hook_fn)
|
|
|
|
else:
|
|
|
|
assert False, "Unsupported hook type"
|
|
|
|
self._feature_outputs = defaultdict(OrderedDict)
|
|
|
|
self.out_as_dict = out_as_dict
|
|
|
|
|
|
|
|
def _collect_output_hook(self, hook_id, *args):
|
|
|
|
x = args[-1] # tensor we want is last argument, output for fwd, input for fwd_pre
|
|
|
|
if isinstance(x, tuple):
|
|
|
|
x = x[0] # unwrap input tuple
|
|
|
|
self._feature_outputs[x.device][hook_id] = x
|
|
|
|
|
|
|
|
def get_output(self, device) -> List[torch.tensor]: # FIXME deal with diff return types for torchscript?
|
|
|
|
if self.out_as_dict:
|
|
|
|
output = self._feature_outputs[device]
|
|
|
|
else:
|
|
|
|
output = list(self._feature_outputs[device].values())
|
|
|
|
self._feature_outputs[device] = OrderedDict() # clear after reading
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
def _module_list(module, flatten_sequential=False):
|
|
|
|
# a yield/iter would be better for this but wouldn't be compatible with torchscript
|
|
|
|
ml = []
|
|
|
|
for name, module in module.named_children():
|
|
|
|
if flatten_sequential and isinstance(module, nn.Sequential):
|
|
|
|
# first level of Sequential containers is flattened into containing model
|
|
|
|
for child_name, child_module in module.named_children():
|
|
|
|
combined = [name, child_name]
|
|
|
|
ml.append(('_'.join(combined), '.'.join(combined), child_module))
|
|
|
|
else:
|
|
|
|
ml.append((name, name, module))
|
|
|
|
return ml
|
|
|
|
|
|
|
|
|
|
|
|
class LayerGetterHooks(nn.ModuleDict):
|
|
|
|
""" LayerGetterHooks
|
|
|
|
TODO
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, model, feature_info, flatten_sequential=False, out_as_dict=False, out_map=None,
|
|
|
|
default_hook_type='forward'):
|
|
|
|
modules = _module_list(model, flatten_sequential=flatten_sequential)
|
|
|
|
remaining = {f['module']: f['hook_type'] if 'hook_type' in f else default_hook_type for f in feature_info}
|
|
|
|
layers = OrderedDict()
|
|
|
|
hooks = []
|
|
|
|
for new_name, old_name, module in modules:
|
|
|
|
layers[new_name] = module
|
|
|
|
for fn, fm in module.named_modules(prefix=old_name):
|
|
|
|
if fn in remaining:
|
|
|
|
hooks.append(dict(module=fn, hook_type=remaining[fn]))
|
|
|
|
del remaining[fn]
|
|
|
|
if not remaining:
|
|
|
|
break
|
|
|
|
assert not remaining, f'Return layers ({remaining}) are not present in model'
|
|
|
|
super(LayerGetterHooks, self).__init__(layers)
|
|
|
|
self.hooks = FeatureHooks(hooks, model.named_modules(), out_as_dict=out_as_dict, out_map=out_map)
|
|
|
|
|
|
|
|
def forward(self, x) -> Dict[Any, torch.Tensor]:
|
|
|
|
for name, module in self.items():
|
|
|
|
x = module(x)
|
|
|
|
return self.hooks.get_output(x.device)
|
|
|
|
|
|
|
|
|
|
|
|
class LayerGetterDict(nn.ModuleDict):
|
|
|
|
"""
|
|
|
|
Module wrapper that returns intermediate layers from a model as a dictionary
|
|
|
|
|
|
|
|
Originally based on concepts from IntermediateLayerGetter at
|
|
|
|
https://github.com/pytorch/vision/blob/d88d8961ae51507d0cb680329d985b1488b1b76b/torchvision/models/_utils.py
|
|
|
|
|
|
|
|
It has a strong assumption that the modules have been registered into the model in the same
|
|
|
|
order as they are used. This means that one should **not** reuse the same nn.Module twice
|
|
|
|
in the forward if you want this to work.
|
|
|
|
|
|
|
|
Additionally, it is only able to query submodules that are directly assigned to the model
|
|
|
|
class (`model.feature1`) or at most one Sequential container deep (`model.features.1`, so
|
|
|
|
long as `features` is a sequential container assigned to the model).
|
|
|
|
|
|
|
|
All Sequential containers that are directly assigned to the original model will have their
|
|
|
|
modules assigned to this module with the name `model.features.1` being changed to `model.features_1`
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
model (nn.Module): model on which we will extract the features
|
|
|
|
return_layers (Dict[name, new_name]): a dict containing the names
|
|
|
|
of the modules for which the activations will be returned as
|
|
|
|
the key of the dict, and the value of the dict is the name
|
|
|
|
of the returned activation (which the user can specify).
|
|
|
|
concat (bool): whether to concatenate intermediate features that are lists or tuples
|
|
|
|
vs select element [0]
|
|
|
|
flatten_sequential (bool): whether to flatten sequential modules assigned to model
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, model, return_layers, concat=False, flatten_sequential=False):
|
|
|
|
self.return_layers = {}
|
|
|
|
self.concat = concat
|
|
|
|
modules = _module_list(model, flatten_sequential=flatten_sequential)
|
|
|
|
remaining = set(return_layers.keys())
|
|
|
|
layers = OrderedDict()
|
|
|
|
for new_name, old_name, module in modules:
|
|
|
|
layers[new_name] = module
|
|
|
|
if old_name in remaining:
|
|
|
|
self.return_layers[new_name] = return_layers[old_name]
|
|
|
|
remaining.remove(old_name)
|
|
|
|
if not remaining:
|
|
|
|
break
|
|
|
|
assert not remaining and len(self.return_layers) == len(return_layers), \
|
|
|
|
f'Return layers ({remaining}) are not present in model'
|
|
|
|
super(LayerGetterDict, self).__init__(layers)
|
|
|
|
|
|
|
|
def forward(self, x) -> Dict[Any, torch.Tensor]:
|
|
|
|
out = OrderedDict()
|
|
|
|
for name, module in self.items():
|
|
|
|
x = module(x)
|
|
|
|
if name in self.return_layers:
|
|
|
|
out_id = self.return_layers[name]
|
|
|
|
if isinstance(x, (tuple, list)):
|
|
|
|
# If model tap is a tuple or list, concat or select first element
|
|
|
|
# FIXME this may need to be more generic / flexible for some nets
|
|
|
|
out[out_id] = torch.cat(x, 1) if self.concat else x[0]
|
|
|
|
else:
|
|
|
|
out[out_id] = x
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class LayerGetterList(nn.Sequential):
|
|
|
|
"""
|
|
|
|
Module wrapper that returns intermediate layers from a model as a list
|
|
|
|
|
|
|
|
Originally based on concepts from IntermediateLayerGetter at
|
|
|
|
https://github.com/pytorch/vision/blob/d88d8961ae51507d0cb680329d985b1488b1b76b/torchvision/models/_utils.py
|
|
|
|
|
|
|
|
It has a strong assumption that the modules have been registered into the model in the same
|
|
|
|
order as they are used. This means that one should **not** reuse the same nn.Module twice
|
|
|
|
in the forward if you want this to work.
|
|
|
|
|
|
|
|
Additionally, it is only able to query submodules that are directly assigned to the model
|
|
|
|
class (`model.feature1`) or at most one Sequential container deep (`model.features.1`) so
|
|
|
|
long as `features` is a sequential container assigned to the model and flatten_sequent=True.
|
|
|
|
|
|
|
|
All Sequential containers that are directly assigned to the original model will have their
|
|
|
|
modules assigned to this module with the name `model.features.1` being changed to `model.features_1`
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
model (nn.Module): model on which we will extract the features
|
|
|
|
return_layers (Dict[name, new_name]): a dict containing the names
|
|
|
|
of the modules for which the activations will be returned as
|
|
|
|
the key of the dict, and the value of the dict is the name
|
|
|
|
of the returned activation (which the user can specify).
|
|
|
|
concat (bool): whether to concatenate intermediate features that are lists or tuples
|
|
|
|
vs select element [0]
|
|
|
|
flatten_sequential (bool): whether to flatten sequential modules assigned to model
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, model, return_layers, concat=False, flatten_sequential=False):
|
|
|
|
super(LayerGetterList, self).__init__()
|
|
|
|
self.return_layers = {}
|
|
|
|
self.concat = concat
|
|
|
|
modules = _module_list(model, flatten_sequential=flatten_sequential)
|
|
|
|
remaining = set(return_layers.keys())
|
|
|
|
for new_name, orig_name, module in modules:
|
|
|
|
self.add_module(new_name, module)
|
|
|
|
if orig_name in remaining:
|
|
|
|
self.return_layers[new_name] = return_layers[orig_name]
|
|
|
|
remaining.remove(orig_name)
|
|
|
|
if not remaining:
|
|
|
|
break
|
|
|
|
assert not remaining and len(self.return_layers) == len(return_layers), \
|
|
|
|
f'Return layers ({remaining}) are not present in model'
|
|
|
|
|
|
|
|
def forward(self, x) -> List[torch.Tensor]:
|
|
|
|
out = []
|
|
|
|
for name, module in self.named_children():
|
|
|
|
x = module(x)
|
|
|
|
if name in self.return_layers:
|
|
|
|
if isinstance(x, (tuple, list)):
|
|
|
|
# If model tap is a tuple or list, concat or select first element
|
|
|
|
# FIXME this may need to be more generic / flexible for some nets
|
|
|
|
out.append(torch.cat(x, 1) if self.concat else x[0])
|
|
|
|
else:
|
|
|
|
out.append(x)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
def _resolve_feature_info(net, out_indices, feature_info=None):
|
|
|
|
if feature_info is None:
|
|
|
|
feature_info = getattr(net, 'feature_info')
|
|
|
|
if isinstance(feature_info, FeatureInfo):
|
|
|
|
return feature_info.from_other(out_indices)
|
|
|
|
elif isinstance(feature_info, (list, tuple)):
|
|
|
|
return FeatureInfo(net.feature_info, out_indices)
|
|
|
|
else:
|
|
|
|
assert False, "Provided feature_info is not valid"
|
|
|
|
|
|
|
|
|
|
|
|
def _get_return_layers(feature_info, out_map):
|
|
|
|
module_names = feature_info.module_name()
|
|
|
|
return_layers = {}
|
|
|
|
for i, name in enumerate(module_names):
|
|
|
|
return_layers[name] = out_map[i] if out_map is not None else feature_info.out_indices[i]
|
|
|
|
return return_layers
|
|
|
|
|
|
|
|
|
|
|
|
class FeatureNet(nn.Module):
|
|
|
|
""" FeatureNet
|
|
|
|
|
|
|
|
Wrap a model and extract features as specified by the out indices, the network
|
|
|
|
is partially re-built from contained modules using the LayerGetters.
|
|
|
|
|
|
|
|
Please read the docstrings of the LayerGetter classes, they will not work on all models.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
|
|
self, net,
|
|
|
|
out_indices=(0, 1, 2, 3, 4), out_map=None, out_as_dict=False, use_hooks=False,
|
|
|
|
feature_info=None, feature_concat=False, flatten_sequential=False):
|
|
|
|
super(FeatureNet, self).__init__()
|
|
|
|
self.feature_info = _resolve_feature_info(net, out_indices, feature_info)
|
|
|
|
if use_hooks:
|
|
|
|
self.body = LayerGetterHooks(net, self.feature_info, out_as_dict=out_as_dict, out_map=out_map)
|
|
|
|
else:
|
|
|
|
return_layers = _get_return_layers(self.feature_info, out_map)
|
|
|
|
lg_args = dict(return_layers=return_layers, concat=feature_concat, flatten_sequential=flatten_sequential)
|
|
|
|
self.body = LayerGetterDict(net, **lg_args) if out_as_dict else LayerGetterList(net, **lg_args)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
output = self.body(x)
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
class FeatureHookNet(nn.Module):
|
|
|
|
""" FeatureHookNet
|
|
|
|
|
|
|
|
Wrap a model and extract features specified by the out indices.
|
|
|
|
|
|
|
|
Features are extracted via hooks without modifying the underlying network in any way. If only
|
|
|
|
part of the model is used it is up to the caller to remove unneeded layers as this wrapper
|
|
|
|
does not rewrite and remove unused top-level modules like FeatureNet with LayerGetter.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
|
|
self, net,
|
|
|
|
out_indices=(0, 1, 2, 3, 4), out_as_dict=False, out_map=None,
|
|
|
|
feature_info=None, feature_concat=False):
|
|
|
|
super(FeatureHookNet, self).__init__()
|
|
|
|
self.feature_info = _resolve_feature_info(net, out_indices, feature_info)
|
|
|
|
self.body = net
|
|
|
|
self.hooks = FeatureHooks(
|
|
|
|
self.feature_info, self.body.named_modules(), out_as_dict=out_as_dict, out_map=out_map)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
self.body(x)
|
|
|
|
return self.hooks.get_output(x.device)
|