|
|
|
""" DropBlock, DropPath
|
|
|
|
|
|
|
|
PyTorch implementations of DropBlock and DropPath (Stochastic Depth) regularization layers.
|
|
|
|
|
|
|
|
Papers:
|
|
|
|
DropBlock: A regularization method for convolutional networks (https://arxiv.org/abs/1810.12890)
|
|
|
|
|
|
|
|
Deep Networks with Stochastic Depth (https://arxiv.org/abs/1603.09382)
|
|
|
|
|
|
|
|
Code:
|
|
|
|
DropBlock impl inspired by two Tensorflow impl that I liked:
|
|
|
|
- https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_model.py#L74
|
|
|
|
- https://github.com/clovaai/assembled-cnn/blob/master/nets/blocks.py
|
|
|
|
|
|
|
|
Hacked together by Ross Wightman
|
|
|
|
"""
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import numpy as np
|
|
|
|
import math
|
|
|
|
|
|
|
|
|
|
|
|
def drop_block_2d(
|
|
|
|
x, drop_prob: float = 0.1, training: bool = False, block_size: int = 7,
|
|
|
|
gamma_scale: float = 1.0, drop_with_noise: bool = False):
|
|
|
|
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
|
|
|
|
|
|
|
|
DropBlock with an experimental gaussian noise option. This layer has been tested on a few training
|
|
|
|
runs with success, but needs further validation and possibly optimization for lower runtime impact.
|
|
|
|
|
|
|
|
"""
|
|
|
|
if drop_prob == 0. or not training:
|
|
|
|
return x
|
|
|
|
_, _, height, width = x.shape
|
|
|
|
total_size = width * height
|
|
|
|
clipped_block_size = min(block_size, min(width, height))
|
|
|
|
# seed_drop_rate, the gamma parameter
|
|
|
|
seed_drop_rate = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / (
|
|
|
|
(width - block_size + 1) *
|
|
|
|
(height - block_size + 1))
|
|
|
|
|
|
|
|
# Forces the block to be inside the feature map.
|
|
|
|
w_i, h_i = torch.meshgrid(torch.arange(width).to(x.device), torch.arange(height).to(x.device))
|
|
|
|
valid_block = ((w_i >= clipped_block_size // 2) & (w_i < width - (clipped_block_size - 1) // 2)) & \
|
|
|
|
((h_i >= clipped_block_size // 2) & (h_i < height - (clipped_block_size - 1) // 2))
|
|
|
|
valid_block = torch.reshape(valid_block, (1, 1, height, width)).float()
|
|
|
|
|
|
|
|
uniform_noise = torch.rand_like(x, dtype=torch.float32)
|
|
|
|
block_mask = ((2 - seed_drop_rate - valid_block + uniform_noise) >= 1).float()
|
|
|
|
block_mask = -F.max_pool2d(
|
|
|
|
-block_mask,
|
|
|
|
kernel_size=clipped_block_size, # block_size, ???
|
|
|
|
stride=1,
|
|
|
|
padding=clipped_block_size // 2)
|
|
|
|
|
|
|
|
if drop_with_noise:
|
|
|
|
normal_noise = torch.randn_like(x)
|
|
|
|
x = x * block_mask + normal_noise * (1 - block_mask)
|
|
|
|
else:
|
|
|
|
normalize_scale = block_mask.numel() / (torch.sum(block_mask) + 1e-7)
|
|
|
|
x = x * block_mask * normalize_scale
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class DropBlock2d(nn.Module):
|
|
|
|
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
|
|
drop_prob=0.1,
|
|
|
|
block_size=7,
|
|
|
|
gamma_scale=1.0,
|
|
|
|
with_noise=False):
|
|
|
|
super(DropBlock2d, self).__init__()
|
|
|
|
self.drop_prob = drop_prob
|
|
|
|
self.gamma_scale = gamma_scale
|
|
|
|
self.block_size = block_size
|
|
|
|
self.with_noise = with_noise
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return drop_block_2d(x, self.drop_prob, self.training, self.block_size, self.gamma_scale, self.with_noise)
|
|
|
|
|
|
|
|
|
|
|
|
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
|
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
|
|
|
|
|
|
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
|
|
|
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
|
|
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
|
|
|
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
|
|
|
'survival rate' as the argument.
|
|
|
|
|
|
|
|
"""
|
|
|
|
if drop_prob == 0. or not training:
|
|
|
|
return x
|
|
|
|
keep_prob = 1 - drop_prob
|
|
|
|
random_tensor = keep_prob + torch.rand((x.size()[0], 1, 1, 1), dtype=x.dtype, device=x.device)
|
|
|
|
random_tensor.floor_() # binarize
|
|
|
|
output = x.div(keep_prob) * random_tensor
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
class DropPath(nn.ModuleDict):
|
|
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
|
|
"""
|
|
|
|
def __init__(self, drop_prob=None):
|
|
|
|
super(DropPath, self).__init__()
|
|
|
|
self.drop_prob = drop_prob
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return drop_path(x, self.drop_prob, self.training)
|