|
|
|
""" Test Time Pooling (Average-Max Pool)
|
|
|
|
|
|
|
|
Hacked together by Ross Wightman
|
|
|
|
"""
|
|
|
|
|
|
|
|
import logging
|
|
|
|
from torch import nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from .adaptive_avgmax_pool import adaptive_avgmax_pool2d
|
|
|
|
|
|
|
|
|
|
|
|
class TestTimePoolHead(nn.Module):
|
|
|
|
def __init__(self, base, original_pool=7):
|
|
|
|
super(TestTimePoolHead, self).__init__()
|
|
|
|
self.base = base
|
|
|
|
self.original_pool = original_pool
|
|
|
|
base_fc = self.base.get_classifier()
|
|
|
|
if isinstance(base_fc, nn.Conv2d):
|
|
|
|
self.fc = base_fc
|
|
|
|
else:
|
|
|
|
self.fc = nn.Conv2d(
|
|
|
|
self.base.num_features, self.base.num_classes, kernel_size=1, bias=True)
|
|
|
|
self.fc.weight.data.copy_(base_fc.weight.data.view(self.fc.weight.size()))
|
|
|
|
self.fc.bias.data.copy_(base_fc.bias.data.view(self.fc.bias.size()))
|
|
|
|
self.base.reset_classifier(0) # delete original fc layer
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.base.forward_features(x)
|
|
|
|
x = F.avg_pool2d(x, kernel_size=self.original_pool, stride=1)
|
|
|
|
x = self.fc(x)
|
|
|
|
x = adaptive_avgmax_pool2d(x, 1)
|
|
|
|
return x.view(x.size(0), -1)
|
|
|
|
|
|
|
|
|
|
|
|
def apply_test_time_pool(model, config, args):
|
|
|
|
test_time_pool = False
|
|
|
|
if not hasattr(model, 'default_cfg') or not model.default_cfg:
|
|
|
|
return model, False
|
|
|
|
if not args.no_test_pool and \
|
|
|
|
config['input_size'][-1] > model.default_cfg['input_size'][-1] and \
|
|
|
|
config['input_size'][-2] > model.default_cfg['input_size'][-2]:
|
|
|
|
logging.info('Target input size %s > pretrained default %s, using test time pooling' %
|
|
|
|
(str(config['input_size'][-2:]), str(model.default_cfg['input_size'][-2:])))
|
|
|
|
model = TestTimePoolHead(model, original_pool=model.default_cfg['pool_size'])
|
|
|
|
test_time_pool = True
|
|
|
|
return model, test_time_pool
|