<!doctype html>
< html lang = "en" class = "no-js" >
< head >
< meta charset = "utf-8" >
< meta name = "viewport" content = "width=device-width,initial-scale=1" >
< meta name = "description" content = "Pretained Image Recognition Models" >
< link rel = "shortcut icon" href = "../assets/images/favicon.png" >
< meta name = "generator" content = "mkdocs-1.1.2, mkdocs-material-5.4.0" >
< title > Recent Changes - Pytorch Image Models< / title >
< link rel = "stylesheet" href = "../assets/stylesheets/main.fe0cca5b.min.css" >
< link href = "https://fonts.gstatic.com" rel = "preconnect" crossorigin >
< link rel = "stylesheet" href = "https://fonts.googleapis.com/css?family=Roboto:300,400,400i,700%7CRoboto+Mono&display=fallback" >
< style > body , input { font-family : "Roboto" , - apple-system , BlinkMacSystemFont , Helvetica , Arial , sans-serif } code , kbd , pre { font-family : "Roboto Mono" , SFMono-Regular , Consolas , Menlo , monospace } < / style >
< / head >
< body dir = "ltr" >
< input class = "md-toggle" data-md-toggle = "drawer" type = "checkbox" id = "__drawer" autocomplete = "off" >
< input class = "md-toggle" data-md-toggle = "search" type = "checkbox" id = "__search" autocomplete = "off" >
< label class = "md-overlay" for = "__drawer" > < / label >
< div data-md-component = "skip" >
< a href = "#recent-changes" class = "md-skip" >
Skip to content
< / a >
< / div >
< div data-md-component = "announce" >
< / div >
< header class = "md-header" data-md-component = "header" >
< nav class = "md-header-nav md-grid" aria-label = "Header" >
< a href = ".." title = "Pytorch Image Models" class = "md-header-nav__button md-logo" aria-label = "Pytorch Image Models" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M12 8a3 3 0 003-3 3 3 0 00-3-3 3 3 0 00-3 3 3 3 0 003 3m0 3.54C9.64 9.35 6.5 8 3 8v11c3.5 0 6.64 1.35 9 3.54 2.36-2.19 5.5-3.54 9-3.54V8c-3.5 0-6.64 1.35-9 3.54z" / > < / svg >
< / a >
< label class = "md-header-nav__button md-icon" for = "__drawer" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2z" / > < / svg >
< / label >
< div class = "md-header-nav__title" data-md-component = "header-title" >
< div class = "md-header-nav__ellipsis" >
< span class = "md-header-nav__topic md-ellipsis" >
Pytorch Image Models
< / span >
< span class = "md-header-nav__topic md-ellipsis" >
Recent Changes
< / span >
< / div >
< / div >
< label class = "md-header-nav__button md-icon" for = "__search" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M9.5 3A6.5 6.5 0 0116 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 019.5 16 6.5 6.5 0 013 9.5 6.5 6.5 0 019.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5z" / > < / svg >
< / label >
< div class = "md-search" data-md-component = "search" role = "dialog" >
< label class = "md-search__overlay" for = "__search" > < / label >
< div class = "md-search__inner" role = "search" >
< form class = "md-search__form" name = "search" >
< input type = "text" class = "md-search__input" name = "query" aria-label = "Search" placeholder = "Search" autocapitalize = "off" autocorrect = "off" autocomplete = "off" spellcheck = "false" data-md-component = "search-query" data-md-state = "active" >
< label class = "md-search__icon md-icon" for = "__search" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M9.5 3A6.5 6.5 0 0116 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 019.5 16 6.5 6.5 0 013 9.5 6.5 6.5 0 019.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5z" / > < / svg >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12z" / > < / svg >
< / label >
< button type = "reset" class = "md-search__icon md-icon" aria-label = "Clear" data-md-component = "search-reset" tabindex = "-1" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M19 6.41L17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41z" / > < / svg >
< / button >
< / form >
< div class = "md-search__output" >
< div class = "md-search__scrollwrap" data-md-scrollfix >
< div class = "md-search-result" data-md-component = "search-result" >
< div class = "md-search-result__meta" >
Initializing search
< / div >
< ol class = "md-search-result__list" > < / ol >
< / div >
< / div >
< / div >
< / div >
< / div >
< div class = "md-header-nav__source" >
< a href = "https://github.com/rwightman/pytorch-image-models/" title = "Go to repository" class = "md-source" >
< div class = "md-source__icon md-icon" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 448 512" > < path d = "M439.55 236.05L244 40.45a28.87 28.87 0 00-40.81 0l-40.66 40.63 51.52 51.52c27.06-9.14 52.68 16.77 43.39 43.68l49.66 49.66c34.23-11.8 61.18 31 35.47 56.69-26.49 26.49-70.21-2.87-56-37.34L240.22 199v121.85c25.3 12.54 22.26 41.85 9.08 55a34.34 34.34 0 01-48.55 0c-17.57-17.6-11.07-46.91 11.25-56v-123c-20.8-8.51-24.6-30.74-18.64-45L142.57 101 8.45 235.14a28.86 28.86 0 000 40.81l195.61 195.6a28.86 28.86 0 0040.8 0l194.69-194.69a28.86 28.86 0 000-40.81z" / > < / svg >
< / div >
< div class = "md-source__repository" >
rwightman/pytorch-image-models
< / div >
< / a >
< / div >
< / nav >
< / header >
< div class = "md-container" data-md-component = "container" >
< main class = "md-main" data-md-component = "main" >
< div class = "md-main__inner md-grid" >
< div class = "md-sidebar md-sidebar--primary" data-md-component = "navigation" >
< div class = "md-sidebar__scrollwrap" >
< div class = "md-sidebar__inner" >
< nav class = "md-nav md-nav--primary" aria-label = "Navigation" data-md-level = "0" >
< label class = "md-nav__title" for = "__drawer" >
< a href = ".." title = "Pytorch Image Models" class = "md-nav__button md-logo" aria-label = "Pytorch Image Models" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M12 8a3 3 0 003-3 3 3 0 00-3-3 3 3 0 00-3 3 3 3 0 003 3m0 3.54C9.64 9.35 6.5 8 3 8v11c3.5 0 6.64 1.35 9 3.54 2.36-2.19 5.5-3.54 9-3.54V8c-3.5 0-6.64 1.35-9 3.54z" / > < / svg >
< / a >
Pytorch Image Models
< / label >
< div class = "md-nav__source" >
< a href = "https://github.com/rwightman/pytorch-image-models/" title = "Go to repository" class = "md-source" >
< div class = "md-source__icon md-icon" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 448 512" > < path d = "M439.55 236.05L244 40.45a28.87 28.87 0 00-40.81 0l-40.66 40.63 51.52 51.52c27.06-9.14 52.68 16.77 43.39 43.68l49.66 49.66c34.23-11.8 61.18 31 35.47 56.69-26.49 26.49-70.21-2.87-56-37.34L240.22 199v121.85c25.3 12.54 22.26 41.85 9.08 55a34.34 34.34 0 01-48.55 0c-17.57-17.6-11.07-46.91 11.25-56v-123c-20.8-8.51-24.6-30.74-18.64-45L142.57 101 8.45 235.14a28.86 28.86 0 000 40.81l195.61 195.6a28.86 28.86 0 0040.8 0l194.69-194.69a28.86 28.86 0 000-40.81z" / > < / svg >
< / div >
< div class = "md-source__repository" >
rwightman/pytorch-image-models
< / div >
< / a >
< / div >
< ul class = "md-nav__list" data-md-scrollfix >
< li class = "md-nav__item" >
< a href = ".." title = "Getting Started" class = "md-nav__link" >
Getting Started
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../models/" title = "Model Architectures" class = "md-nav__link" >
Model Architectures
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../results/" title = "Results" class = "md-nav__link" >
Results
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../scripts/" title = "Scripts" class = "md-nav__link" >
Scripts
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../training_hparam_examples/" title = "Training Examples" class = "md-nav__link" >
Training Examples
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../feature_extraction/" title = "Feature Extraction" class = "md-nav__link" >
Feature Extraction
< / a >
< / li >
< li class = "md-nav__item md-nav__item--active" >
< input class = "md-nav__toggle md-toggle" data-md-toggle = "toc" type = "checkbox" id = "__toc" >
< label class = "md-nav__link md-nav__link--active" for = "__toc" >
Recent Changes
< span class = "md-nav__icon md-icon" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M3 9h14V7H3v2m0 4h14v-2H3v2m0 4h14v-2H3v2m16 0h2v-2h-2v2m0-10v2h2V7h-2m0 6h2v-2h-2v2z" / > < / svg >
< / span >
< / label >
< a href = "./" title = "Recent Changes" class = "md-nav__link md-nav__link--active" >
Recent Changes
< / a >
< nav class = "md-nav md-nav--secondary" aria-label = "Table of contents" >
< label class = "md-nav__title" for = "__toc" >
< span class = "md-nav__icon md-icon" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12z" / > < / svg >
< / span >
Table of contents
< / label >
< ul class = "md-nav__list" data-md-scrollfix >
< li class = "md-nav__item" >
< a href = "#aug-1-2020" class = "md-nav__link" >
Aug 1, 2020
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#june-11-2020" class = "md-nav__link" >
June 11, 2020
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#may-12-2020" class = "md-nav__link" >
May 12, 2020
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#may-3-2020" class = "md-nav__link" >
May 3, 2020
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#may-1-2020" class = "md-nav__link" >
May 1, 2020
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#april-5-2020" class = "md-nav__link" >
April 5, 2020
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#march-18-2020" class = "md-nav__link" >
March 18, 2020
< / a >
< / li >
< / ul >
< / nav >
< / li >
< li class = "md-nav__item" >
< a href = "../archived_changes/" title = "Archived Changes" class = "md-nav__link" >
Archived Changes
< / a >
< / li >
< / ul >
< / nav >
< / div >
< / div >
< / div >
< div class = "md-sidebar md-sidebar--secondary" data-md-component = "toc" >
< div class = "md-sidebar__scrollwrap" >
< div class = "md-sidebar__inner" >
< nav class = "md-nav md-nav--secondary" aria-label = "Table of contents" >
< label class = "md-nav__title" for = "__toc" >
< span class = "md-nav__icon md-icon" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12z" / > < / svg >
< / span >
Table of contents
< / label >
< ul class = "md-nav__list" data-md-scrollfix >
< li class = "md-nav__item" >
< a href = "#aug-1-2020" class = "md-nav__link" >
Aug 1, 2020
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#june-11-2020" class = "md-nav__link" >
June 11, 2020
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#may-12-2020" class = "md-nav__link" >
May 12, 2020
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#may-3-2020" class = "md-nav__link" >
May 3, 2020
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#may-1-2020" class = "md-nav__link" >
May 1, 2020
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#april-5-2020" class = "md-nav__link" >
April 5, 2020
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#march-18-2020" class = "md-nav__link" >
March 18, 2020
< / a >
< / li >
< / ul >
< / nav >
< / div >
< / div >
< / div >
< div class = "md-content" >
< article class = "md-content__inner md-typeset" >
< a href = "https://github.com/rwightman/pytorch-image-models/edit/master/docs/changes.md" title = "Edit this page" class = "md-content__button md-icon" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M20.71 7.04c.39-.39.39-1.04 0-1.41l-2.34-2.34c-.37-.39-1.02-.39-1.41 0l-1.84 1.83 3.75 3.75M3 17.25V21h3.75L17.81 9.93l-3.75-3.75L3 17.25z" / > < / svg >
< / a >
< h1 id = "recent-changes" > Recent Changes< / h1 >
< h3 id = "aug-1-2020" > Aug 1, 2020< / h3 >
< p > Universal feature extraction, new models, new weights, new test sets.
* All models support the < code > features_only=True< / code > argument for < code > create_model< / code > call to return a network that extracts features from the deepest layer at each stride.
* New models
* CSPResNet, CSPResNeXt, CSPDarkNet, DarkNet
* ReXNet
* (Aligned) Xception41/65/71 (a proper port of TF models)
* New trained weights
* SEResNet50 - 80.3
* CSPDarkNet53 - 80.1 top-1
* CSPResNeXt50 - 80.0 to-1
* DPN68b - 79.2 top-1
* EfficientNet-Lite0 (non-TF ver) - 75.5 (submitted by @hal-314)
* Add 'real' labels for ImageNet and ImageNet-Renditions test set, see < a href = "results/README.md" > < code > results/README.md< / code > < / a > < / p >
< h3 id = "june-11-2020" > June 11, 2020< / h3 >
< p > Bunch of changes:< / p >
< ul >
< li > DenseNet models updated with memory efficient addition from torchvision (fixed a bug), blur pooling and deep stem additions< / li >
< li > VoVNet V1 and V2 models added, 39 V2 variant (ese_vovnet_39b) trained to 79.3 top-1< / li >
< li > Activation factory added along with new activations:< / li >
< li > select act at model creation time for more flexibility in using activations compatible with scripting or tracing (ONNX export)< / li >
< li > hard_mish (experimental) added with memory-efficient grad, along with ME hard_swish< / li >
< li > context mgr for setting exportable/scriptable/no_jit states< / li >
< li > Norm + Activation combo layers added with initial trial support in DenseNet and VoVNet along with impl of EvoNorm and InplaceAbn wrapper that fit the interface< / li >
< li > Torchscript works for all but two of the model types as long as using Pytorch 1.5+, tests added for this< / li >
< li > Some import cleanup and classifier reset changes, all models will have classifier reset to nn.Identity on reset_classifer(0) call< / li >
< li > Prep for 0.1.28 pip release< / li >
< / ul >
< h3 id = "may-12-2020" > May 12, 2020< / h3 >
< ul >
< li > Add ResNeSt models (code adapted from < a href = "https://github.com/zhanghang1989/ResNeSt" > https://github.com/zhanghang1989/ResNeSt< / a > , paper < a href = "https://arxiv.org/abs/2004.08955" > https://arxiv.org/abs/2004.08955< / a > ))< / li >
< / ul >
< h3 id = "may-3-2020" > May 3, 2020< / h3 >
< ul >
< li > Pruned EfficientNet B1, B2, and B3 (< a href = "https://arxiv.org/abs/2002.08258" > https://arxiv.org/abs/2002.08258< / a > ) contributed by < a href = "https://github.com/yoniaflalo" > Yonathan Aflalo< / a > < / li >
< / ul >
< h3 id = "may-1-2020" > May 1, 2020< / h3 >
< ul >
< li > Merged a number of execellent contributions in the ResNet model family over the past month< / li >
< li > BlurPool2D and resnetblur models initiated by < a href = "https://github.com/VRandme" > Chris Ha< / a > , I trained resnetblur50 to 79.3.< / li >
< li > TResNet models and SpaceToDepth, AntiAliasDownsampleLayer layers by < a href = "https://github.com/mrT23" > mrT23< / a > < / li >
< li > ecaresnet (50d, 101d, light) models and two pruned variants using pruning as per (< a href = "https://arxiv.org/abs/2002.08258" > https://arxiv.org/abs/2002.08258< / a > ) by < a href = "https://github.com/yoniaflalo" > Yonathan Aflalo< / a > < / li >
< li > 200 pretrained models in total now with updated results csv in results folder< / li >
< / ul >
< h3 id = "april-5-2020" > April 5, 2020< / h3 >
< ul >
< li > Add some newly trained MobileNet-V2 models trained with latest h-params, rand augment. They compare quite favourably to EfficientNet-Lite< / li >
< li > 3.5M param MobileNet-V2 100 @ 73%< / li >
< li > 4.5M param MobileNet-V2 110d @ 75%< / li >
< li > 6.1M param MobileNet-V2 140 @ 76.5%< / li >
< li > 5.8M param MobileNet-V2 120d @ 77.3%< / li >
< / ul >
< h3 id = "march-18-2020" > March 18, 2020< / h3 >
< ul >
< li > Add EfficientNet-Lite models w/ weights ported from < a href = "https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite" > Tensorflow TPU< / a > < / li >
< li > Add RandAugment trained ResNeXt-50 32x4d weights with 79.8 top-1. Trained by < a href = "https://github.com/andravin" > Andrew Lavin< / a > (see Training section for hparams)< / li >
< / ul >
< / article >
< / div >
< / div >
< / main >
< footer class = "md-footer" >
< div class = "md-footer-nav" >
< nav class = "md-footer-nav__inner md-grid" aria-label = "Footer" >
< a href = "../feature_extraction/" title = "Feature Extraction" class = "md-footer-nav__link md-footer-nav__link--prev" rel = "prev" >
< div class = "md-footer-nav__button md-icon" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12z" / > < / svg >
< / div >
< div class = "md-footer-nav__title" >
< div class = "md-ellipsis" >
< span class = "md-footer-nav__direction" >
Previous
< / span >
Feature Extraction
< / div >
< / div >
< / a >
< a href = "../archived_changes/" title = "Archived Changes" class = "md-footer-nav__link md-footer-nav__link--next" rel = "next" >
< div class = "md-footer-nav__title" >
< div class = "md-ellipsis" >
< span class = "md-footer-nav__direction" >
Next
< / span >
Archived Changes
< / div >
< / div >
< div class = "md-footer-nav__button md-icon" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4z" / > < / svg >
< / div >
< / a >
< / nav >
< / div >
< div class = "md-footer-meta md-typeset" >
< div class = "md-footer-meta__inner md-grid" >
< div class = "md-footer-copyright" >
Made with
< a href = "https://squidfunk.github.io/mkdocs-material/" target = "_blank" rel = "noopener" >
Material for MkDocs
< / a >
< / div >
< / div >
< / div >
< / footer >
< / div >
< script src = "../assets/javascripts/vendor.d710d30a.min.js" > < / script >
< script src = "../assets/javascripts/bundle.b39636ac.min.js" > < / script > < script id = "__lang" type = "application/json" > { "clipboard.copy" : "Copy to clipboard" , "clipboard.copied" : "Copied to clipboard" , "search.config.lang" : "en" , "search.config.pipeline" : "trimmer, stopWordFilter" , "search.config.separator" : "[\\s\\-]+" , "search.result.placeholder" : "Type to start searching" , "search.result.none" : "No matching documents" , "search.result.one" : "1 matching document" , "search.result.other" : "# matching documents" } < / script >
< script >
app = initialize({
base: "..",
features: [],
search: Object.assign({
worker: "../assets/javascripts/worker/search.a68abb33.min.js"
}, typeof search !== "undefined" & & search)
})
< / script >
< script src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-MML-AM_CHTML" > < / script >
< script src = "https://cdnjs.cloudflare.com/ajax/libs/tablesort/5.2.1/tablesort.min.js" > < / script >
< script src = "../javascripts/tables.js" > < / script >
< / body >
< / html >