|
|
|
""" Real labels evaluator for ImageNet
|
|
|
|
Paper: `Are we done with ImageNet?` - https://arxiv.org/abs/2006.07159
|
|
|
|
Based on Numpy example at https://github.com/google-research/reassessed-imagenet
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
|
|
"""
|
|
|
|
import os
|
|
|
|
import json
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
class RealLabelsImagenet:
|
|
|
|
|
|
|
|
def __init__(self, filenames, real_json='real.json', topk=(1, 5)):
|
|
|
|
with open(real_json) as real_labels:
|
|
|
|
real_labels = json.load(real_labels)
|
|
|
|
real_labels = {f'ILSVRC2012_val_{i + 1:08d}.JPEG': labels for i, labels in enumerate(real_labels)}
|
|
|
|
self.real_labels = real_labels
|
|
|
|
self.filenames = filenames
|
|
|
|
assert len(self.filenames) == len(self.real_labels)
|
|
|
|
self.topk = topk
|
|
|
|
self.is_correct = {k: [] for k in topk}
|
|
|
|
self.sample_idx = 0
|
|
|
|
|
|
|
|
def add_result(self, output):
|
|
|
|
maxk = max(self.topk)
|
|
|
|
_, pred_batch = output.topk(maxk, 1, True, True)
|
|
|
|
pred_batch = pred_batch.cpu().numpy()
|
|
|
|
for pred in pred_batch:
|
|
|
|
filename = self.filenames[self.sample_idx]
|
|
|
|
filename = os.path.basename(filename)
|
|
|
|
if self.real_labels[filename]:
|
|
|
|
for k in self.topk:
|
|
|
|
self.is_correct[k].append(
|
|
|
|
any([p in self.real_labels[filename] for p in pred[:k]]))
|
|
|
|
self.sample_idx += 1
|
|
|
|
|
|
|
|
def get_accuracy(self, k=None):
|
|
|
|
if k is None:
|
|
|
|
return {k: float(np.mean(self.is_correct[k])) * 100 for k in self.topk}
|
|
|
|
else:
|
|
|
|
return float(np.mean(self.is_correct[k])) * 100
|