# Summary
A **ResNest** is a variant on a [ResNet ](https://paperswithcode.com/method/resnet ), which instead stacks [Split-Attention blocks ](https://paperswithcode.com/method/split-attention ). The cardinal group representations are then concatenated along the channel dimension: $V = \text{Concat}${$V^{1},V^{2},\cdots{V}^{K}$}. As in standard residual blocks, the final output $Y$ of otheur Split-Attention block is produced using a shortcut connection: $Y=V+X$, if the input and output feature-map share the same shape. For blocks with a stride, an appropriate transformation $\mathcal{T}$ is applied to the shortcut connection to align the output shapes: $Y=V+\mathcal{T}(X)$. For example, $\mathcal{T}$ can be strided convolution or combined convolution-with-pooling.
## How do I use this model on an image?
To load a pretrained model:
```python
import timm
model = timm.create_model('resnest50d_4s2x40d', pretrained=True)
model.eval()
```
To load and preprocess the image:
```python
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
config = resolve_data_config({}, model=model)
transform = create_transform(**config)
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```python
import torch
with torch.no_grad():
out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename)
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
Replace the model name with the variant you want to use, e.g. `resnest50d_4s2x40d` . You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the [timm feature extraction examples ](https://rwightman.github.io/pytorch-image-models/feature_extraction/ ), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('resnest50d_4s2x40d', pretrained=True).reset_classifier(NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts ](https://rwightman.github.io/pytorch-image-models/scripts/ ) for training a new model afresh.
## Citation
```BibTeX
@misc {zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola},
year={2020},
eprint={2004.08955},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Models:
- Name: resnest50d_4s2x40d
Metadata:
FLOPs: 5657064720
Epochs: 270
Batch Size: 8192
Training Data:
- ImageNet
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Resources: 64x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
File Size: 122133282
Tasks:
- Image Classification
Training Time: ''
ID: resnest50d_4s2x40d
LR: 0.1
Layers: 50
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L218
Config: ''
In Collection: ResNeSt
- Name: resnest200e
Metadata:
FLOPs: 45954387872
Epochs: 270
Batch Size: 2048
Training Data:
- ImageNet
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Resources: 64x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
File Size: 193782911
Tasks:
- Image Classification
Training Time: ''
ID: resnest200e
LR: 0.1
Layers: 200
Dropout: 0.2
Crop Pct: '0.909'
Momentum: 0.9
Image Size: '320'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L194
Config: ''
In Collection: ResNeSt
- Name: resnest14d
Metadata:
FLOPs: 3548594464
Epochs: 270
Batch Size: 8192
Training Data:
- ImageNet
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Resources: 64x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
File Size: 42562639
Tasks:
- Image Classification
Training Time: ''
ID: resnest14d
LR: 0.1
Layers: 14
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L148
Config: ''
In Collection: ResNeSt
- Name: resnest101e
Metadata:
FLOPs: 17423183648
Epochs: 270
Batch Size: 4096
Training Data:
- ImageNet
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Resources: 64x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
File Size: 193782911
Tasks:
- Image Classification
Training Time: ''
ID: resnest101e
LR: 0.1
Layers: 101
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '256'
Weight Decay: 0.0001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L182
Config: ''
In Collection: ResNeSt
- Name: resnest269e
Metadata:
FLOPs: 100830307104
Epochs: 270
Batch Size: 2048
Training Data:
- ImageNet
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Resources: 64x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
File Size: 445402691
Tasks:
- Image Classification
Training Time: ''
ID: resnest269e
LR: 0.1
Layers: 269
Dropout: 0.2
Crop Pct: '0.928'
Momentum: 0.9
Image Size: '416'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L206
Config: ''
In Collection: ResNeSt
- Name: resnest26d
Metadata:
FLOPs: 4678918720
Epochs: 270
Batch Size: 8192
Training Data:
- ImageNet
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Resources: 64x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
File Size: 68470242
Tasks:
- Image Classification
Training Time: ''
ID: resnest26d
LR: 0.1
Layers: 26
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L159
Config: ''
In Collection: ResNeSt
- Name: resnest50d
Metadata:
FLOPs: 6937106336
Epochs: 270
Batch Size: 8192
Training Data:
- ImageNet
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Resources: 64x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
File Size: 110273258
Tasks:
- Image Classification
Training Time: ''
ID: resnest50d
LR: 0.1
Layers: 50
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L170
Config: ''
In Collection: ResNeSt
- Name: resnest50d_1s4x24d
Metadata:
FLOPs: 5686764544
Epochs: 270
Batch Size: 8192
Training Data:
- ImageNet
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Resources: 64x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
File Size: 103045531
Tasks:
- Image Classification
ID: resnest50d_1s4x24d
LR: 0.1
Layers: 50
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L229
In Collection: ResNeSt
Collections:
- Name: ResNeSt
Paper:
title: 'ResNeSt: Split-Attention Networks'
url: https://paperswithcode.com//paper/resnest-split-attention-networks
type: model-index
Type: model-index
-->