# Summary
**RegNetX** is a convolutional network design space with simple, regular models with parameters: depth $d$, initial width $w\_{0} > 0$, and slope $w\_{a} > 0$, and generates a different block width $u\_{j}$ for each block $j < d $. The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths ( the design space only contains models with this linear structure ) :
$$ u\_{j} = w\_{0} + w\_{a}\cdot{j} $$
For **RegNetX** we have additional restrictions: we set $b = 1$ (the bottleneck ratio), $12 \leq d \leq 28$, and $w\_{m} \geq 2$ (the width multiplier).
## How do I use this model on an image?
To load a pretrained model:
```python
import timm
model = timm.create_model('regnetx_040', pretrained=True)
model.eval()
```
To load and preprocess the image:
```python
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
config = resolve_data_config({}, model=model)
transform = create_transform(**config)
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```python
import torch
with torch.no_grad():
out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename)
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
Replace the model name with the variant you want to use, e.g. `regnetx_040` . You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the [timm feature extraction examples ](https://rwightman.github.io/pytorch-image-models/feature_extraction/ ), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('regnetx_040', pretrained=True).reset_classifier(NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts ](https://rwightman.github.io/pytorch-image-models/scripts/ ) for training a new model afresh.
## Citation
```BibTeX
@misc {radosavovic2020designing,
title={Designing Network Design Spaces},
author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár},
year={2020},
eprint={2003.13678},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Models:
- Name: regnetx_040
Metadata:
FLOPs: 5095167744
Epochs: 100
Batch Size: 512
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
File Size: 88844824
Tasks:
- Image Classification
ID: regnetx_040
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L373
In Collection: RegNetX
- Name: regnetx_004
Metadata:
FLOPs: 510619136
Epochs: 100
Batch Size: 1024
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
File Size: 20841309
Tasks:
- Image Classification
ID: regnetx_004
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L343
In Collection: RegNetX
- Name: regnetx_006
Metadata:
FLOPs: 771659136
Epochs: 100
Batch Size: 1024
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
File Size: 24965172
Tasks:
- Image Classification
ID: regnetx_006
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L349
In Collection: RegNetX
- Name: regnetx_002
Metadata:
FLOPs: 255276032
Epochs: 100
Batch Size: 1024
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
File Size: 10862199
Tasks:
- Image Classification
ID: regnetx_002
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L337
In Collection: RegNetX
- Name: regnetx_008
Metadata:
FLOPs: 1027038208
Epochs: 100
Batch Size: 1024
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
File Size: 29235944
Tasks:
- Image Classification
ID: regnetx_008
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L355
In Collection: RegNetX
- Name: regnetx_016
Metadata:
FLOPs: 2059337856
Epochs: 100
Batch Size: 1024
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
File Size: 36988158
Tasks:
- Image Classification
ID: regnetx_016
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L361
In Collection: RegNetX
- Name: regnetx_032
Metadata:
FLOPs: 4082555904
Epochs: 100
Batch Size: 512
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
File Size: 61509573
Tasks:
- Image Classification
ID: regnetx_032
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L367
In Collection: RegNetX
- Name: regnetx_064
Metadata:
FLOPs: 8303405824
Epochs: 100
Batch Size: 512
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
File Size: 105184854
Tasks:
- Image Classification
ID: regnetx_064
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L379
In Collection: RegNetX
- Name: regnetx_080
Metadata:
FLOPs: 10276726784
Epochs: 100
Batch Size: 512
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
File Size: 158720042
Tasks:
- Image Classification
ID: regnetx_080
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L385
In Collection: RegNetX
- Name: regnetx_120
Metadata:
FLOPs: 15536378368
Epochs: 100
Batch Size: 512
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
File Size: 184866342
Tasks:
- Image Classification
ID: regnetx_120
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L391
In Collection: RegNetX
- Name: regnetx_160
Metadata:
FLOPs: 20491740672
Epochs: 100
Batch Size: 512
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
File Size: 217623862
Tasks:
- Image Classification
ID: regnetx_160
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L397
In Collection: RegNetX
- Name: regnetx_320
Metadata:
FLOPs: 40798958592
Epochs: 100
Batch Size: 256
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- ReLU
File Size: 431962133
Tasks:
- Image Classification
ID: regnetx_320
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 5.0e-05
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L403
In Collection: RegNetX
Collections:
- Name: RegNetX
Paper:
title: Designing Network Design Spaces
url: https://paperswithcode.com//paper/designing-network-design-spaces
type: model-index
Type: model-index
-->