You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/modelindex/models/ig-resnext.md

239 lines
7.3 KiB

# Summary
A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) $C$, as an essential factor in addition to the dimensions of depth and width.
This model was trained on billions of Instagram images using thousands of distinct hashtags as labels exhibit excellent transfer learning performance.
Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only.
## How do I use this model on an image?
To load a pretrained model:
```python
import timm
model = timm.create_model('ig_resnext101_32x32d', pretrained=True)
model.eval()
```
To load and preprocess the image:
```python
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
config = resolve_data_config({}, model=model)
transform = create_transform(**config)
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```python
import torch
with torch.no_grad():
out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename)
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
Replace the model name with the variant you want to use, e.g. `ig_resnext101_32x32d`. You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('ig_resnext101_32x32d', pretrained=True).reset_classifier(NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
## Citation
```BibTeX
@misc{mahajan2018exploring,
title={Exploring the Limits of Weakly Supervised Pretraining},
author={Dhruv Mahajan and Ross Girshick and Vignesh Ramanathan and Kaiming He and Manohar Paluri and Yixuan Li and Ashwin Bharambe and Laurens van der Maaten},
year={2018},
eprint={1805.00932},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Models:
- Name: ig_resnext101_32x32d
Metadata:
FLOPs: 112225170432
Epochs: 100
Batch Size: 8064
Training Data:
- IG-3.5B-17k
- ImageNet
Training Techniques:
- Nesterov Accelerated Gradient
- Weight Decay
Training Resources: 336x GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Global Average Pooling
- Grouped Convolution
- Max Pooling
- ReLU
- ResNeXt Block
- Residual Connection
- Softmax
File Size: 1876573776
Tasks:
- Image Classification
ID: ig_resnext101_32x32d
Layers: 101
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.001
Interpolation: bilinear
Minibatch Size: 8064
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L885
In Collection: IG ResNeXt
- Name: ig_resnext101_32x16d
Metadata:
FLOPs: 46623691776
Epochs: 100
Batch Size: 8064
Training Data:
- IG-3.5B-17k
- ImageNet
Training Techniques:
- Nesterov Accelerated Gradient
- Weight Decay
Training Resources: 336x GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Global Average Pooling
- Grouped Convolution
- Max Pooling
- ReLU
- ResNeXt Block
- Residual Connection
- Softmax
File Size: 777518664
Tasks:
- Image Classification
ID: ig_resnext101_32x16d
Layers: 101
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L874
In Collection: IG ResNeXt
- Name: ig_resnext101_32x48d
Metadata:
FLOPs: 197446554624
Epochs: 100
Batch Size: 8064
Training Data:
- IG-3.5B-17k
- ImageNet
Training Techniques:
- Nesterov Accelerated Gradient
- Weight Decay
Training Resources: 336x GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Global Average Pooling
- Grouped Convolution
- Max Pooling
- ReLU
- ResNeXt Block
- Residual Connection
- Softmax
File Size: 3317136976
Tasks:
- Image Classification
ID: ig_resnext101_32x48d
Layers: 101
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L896
In Collection: IG ResNeXt
- Name: ig_resnext101_32x8d
Metadata:
FLOPs: 21180417024
Epochs: 100
Batch Size: 8064
Training Data:
- IG-3.5B-17k
- ImageNet
Training Techniques:
- Nesterov Accelerated Gradient
- Weight Decay
Training Resources: 336x GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Global Average Pooling
- Grouped Convolution
- Max Pooling
- ReLU
- ResNeXt Block
- Residual Connection
- Softmax
File Size: 356056638
Tasks:
- Image Classification
ID: ig_resnext101_32x8d
Layers: 101
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 0.001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L863
In Collection: IG ResNeXt
Collections:
- Name: IG ResNeXt
Paper:
title: Exploring the Limits of Weakly Supervised Pretraining
4 years ago
url: https://paperswithcode.com//paper/exploring-the-limits-of-weakly-supervised
type: model-index
Type: model-index
-->