You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
198 lines
5.4 KiB
198 lines
5.4 KiB
4 years ago
|
# RexNet
|
||
4 years ago
|
|
||
|
**Rank Expansion Networks** (ReXNets) follow a set of new design principles for designing bottlenecks in image classification models. Authors refine each layer by 1) expanding the input channel size of the convolution layer and 2) replacing the [ReLU6s](https://www.paperswithcode.com/method/relu6).
|
||
|
|
||
|
{% include 'code_snippets.md' %}
|
||
|
|
||
|
## How do I train this model?
|
||
|
|
||
|
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
|
||
|
|
||
|
## Citation
|
||
|
|
||
|
```BibTeX
|
||
|
@misc{han2020rexnet,
|
||
|
title={ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network},
|
||
|
author={Dongyoon Han and Sangdoo Yun and Byeongho Heo and YoungJoon Yoo},
|
||
|
year={2020},
|
||
|
eprint={2007.00992},
|
||
|
archivePrefix={arXiv},
|
||
|
primaryClass={cs.CV}
|
||
|
}
|
||
|
```
|
||
|
|
||
|
<!--
|
||
4 years ago
|
Type: model-index
|
||
|
Collections:
|
||
|
- Name: RexNet
|
||
|
Paper:
|
||
|
Title: 'ReXNet: Diminishing Representational Bottleneck on Convolutional Neural
|
||
|
Network'
|
||
|
URL: https://paperswithcode.com/paper/rexnet-diminishing-representational
|
||
4 years ago
|
Models:
|
||
|
- Name: rexnet_100
|
||
4 years ago
|
In Collection: RexNet
|
||
4 years ago
|
Metadata:
|
||
|
FLOPs: 509989377
|
||
4 years ago
|
Parameters: 4800000
|
||
|
File Size: 19417552
|
||
4 years ago
|
Architecture:
|
||
|
- Batch Normalization
|
||
|
- Convolution
|
||
|
- Dropout
|
||
|
- ReLU6
|
||
|
- Residual Connection
|
||
|
Tasks:
|
||
|
- Image Classification
|
||
4 years ago
|
Training Techniques:
|
||
|
- Label Smoothing
|
||
|
- Linear Warmup With Cosine Annealing
|
||
|
- Nesterov Accelerated Gradient
|
||
|
- Weight Decay
|
||
|
Training Data:
|
||
|
- ImageNet
|
||
|
Training Resources: 4x NVIDIA V100 GPUs
|
||
4 years ago
|
ID: rexnet_100
|
||
|
LR: 0.5
|
||
4 years ago
|
Epochs: 400
|
||
4 years ago
|
Dropout: 0.2
|
||
|
Crop Pct: '0.875'
|
||
|
Momentum: 0.9
|
||
4 years ago
|
Batch Size: 512
|
||
4 years ago
|
Image Size: '224'
|
||
|
Weight Decay: 1.0e-05
|
||
|
Interpolation: bicubic
|
||
|
Label Smoothing: 0.1
|
||
|
Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L212
|
||
4 years ago
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_100-1b4dddf4.pth
|
||
|
Results:
|
||
|
- Task: Image Classification
|
||
|
Dataset: ImageNet
|
||
|
Metrics:
|
||
|
Top 1 Accuracy: 77.86%
|
||
|
Top 5 Accuracy: 93.88%
|
||
4 years ago
|
- Name: rexnet_130
|
||
4 years ago
|
In Collection: RexNet
|
||
4 years ago
|
Metadata:
|
||
|
FLOPs: 848364461
|
||
4 years ago
|
Parameters: 7560000
|
||
|
File Size: 30508197
|
||
4 years ago
|
Architecture:
|
||
|
- Batch Normalization
|
||
|
- Convolution
|
||
|
- Dropout
|
||
|
- ReLU6
|
||
|
- Residual Connection
|
||
|
Tasks:
|
||
|
- Image Classification
|
||
4 years ago
|
Training Techniques:
|
||
|
- Label Smoothing
|
||
|
- Linear Warmup With Cosine Annealing
|
||
|
- Nesterov Accelerated Gradient
|
||
|
- Weight Decay
|
||
|
Training Data:
|
||
|
- ImageNet
|
||
|
Training Resources: 4x NVIDIA V100 GPUs
|
||
4 years ago
|
ID: rexnet_130
|
||
|
LR: 0.5
|
||
4 years ago
|
Epochs: 400
|
||
4 years ago
|
Dropout: 0.2
|
||
|
Crop Pct: '0.875'
|
||
|
Momentum: 0.9
|
||
4 years ago
|
Batch Size: 512
|
||
4 years ago
|
Image Size: '224'
|
||
|
Weight Decay: 1.0e-05
|
||
|
Interpolation: bicubic
|
||
|
Label Smoothing: 0.1
|
||
|
Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L218
|
||
4 years ago
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_130-590d768e.pth
|
||
|
Results:
|
||
|
- Task: Image Classification
|
||
|
Dataset: ImageNet
|
||
|
Metrics:
|
||
|
Top 1 Accuracy: 79.49%
|
||
|
Top 5 Accuracy: 94.67%
|
||
4 years ago
|
- Name: rexnet_150
|
||
4 years ago
|
In Collection: RexNet
|
||
4 years ago
|
Metadata:
|
||
|
FLOPs: 1122374469
|
||
4 years ago
|
Parameters: 9730000
|
||
|
File Size: 39227315
|
||
4 years ago
|
Architecture:
|
||
|
- Batch Normalization
|
||
|
- Convolution
|
||
|
- Dropout
|
||
|
- ReLU6
|
||
|
- Residual Connection
|
||
|
Tasks:
|
||
|
- Image Classification
|
||
4 years ago
|
Training Techniques:
|
||
|
- Label Smoothing
|
||
|
- Linear Warmup With Cosine Annealing
|
||
|
- Nesterov Accelerated Gradient
|
||
|
- Weight Decay
|
||
|
Training Data:
|
||
|
- ImageNet
|
||
|
Training Resources: 4x NVIDIA V100 GPUs
|
||
4 years ago
|
ID: rexnet_150
|
||
|
LR: 0.5
|
||
4 years ago
|
Epochs: 400
|
||
4 years ago
|
Dropout: 0.2
|
||
|
Crop Pct: '0.875'
|
||
|
Momentum: 0.9
|
||
4 years ago
|
Batch Size: 512
|
||
4 years ago
|
Image Size: '224'
|
||
|
Weight Decay: 1.0e-05
|
||
|
Interpolation: bicubic
|
||
|
Label Smoothing: 0.1
|
||
|
Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L224
|
||
4 years ago
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_150-bd1a6aa8.pth
|
||
|
Results:
|
||
|
- Task: Image Classification
|
||
|
Dataset: ImageNet
|
||
|
Metrics:
|
||
|
Top 1 Accuracy: 80.31%
|
||
|
Top 5 Accuracy: 95.16%
|
||
4 years ago
|
- Name: rexnet_200
|
||
4 years ago
|
In Collection: RexNet
|
||
4 years ago
|
Metadata:
|
||
|
FLOPs: 1960224938
|
||
4 years ago
|
Parameters: 16370000
|
||
|
File Size: 65862221
|
||
4 years ago
|
Architecture:
|
||
|
- Batch Normalization
|
||
|
- Convolution
|
||
|
- Dropout
|
||
|
- ReLU6
|
||
|
- Residual Connection
|
||
|
Tasks:
|
||
|
- Image Classification
|
||
4 years ago
|
Training Techniques:
|
||
|
- Label Smoothing
|
||
|
- Linear Warmup With Cosine Annealing
|
||
|
- Nesterov Accelerated Gradient
|
||
|
- Weight Decay
|
||
|
Training Data:
|
||
|
- ImageNet
|
||
|
Training Resources: 4x NVIDIA V100 GPUs
|
||
4 years ago
|
ID: rexnet_200
|
||
|
LR: 0.5
|
||
4 years ago
|
Epochs: 400
|
||
4 years ago
|
Dropout: 0.2
|
||
|
Crop Pct: '0.875'
|
||
|
Momentum: 0.9
|
||
4 years ago
|
Batch Size: 512
|
||
4 years ago
|
Image Size: '224'
|
||
|
Weight Decay: 1.0e-05
|
||
|
Interpolation: bicubic
|
||
|
Label Smoothing: 0.1
|
||
|
Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L230
|
||
4 years ago
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_200-8c0b7f2d.pth
|
||
|
Results:
|
||
|
- Task: Image Classification
|
||
|
Dataset: ImageNet
|
||
|
Metrics:
|
||
|
Top 1 Accuracy: 81.63%
|
||
|
Top 5 Accuracy: 95.67%
|
||
4 years ago
|
-->
|