|
|
|
from .registry import is_model, is_model_in_modules, model_entrypoint
|
|
|
|
from .helpers import load_checkpoint
|
|
|
|
from .layers import set_layer_config
|
|
|
|
from .hub import load_model_config_from_hf
|
|
|
|
|
|
|
|
|
|
|
|
def split_model_name(model_name):
|
|
|
|
model_split = model_name.split(':', 1)
|
|
|
|
if len(model_split) == 1:
|
|
|
|
return '', model_split[0]
|
|
|
|
else:
|
|
|
|
source_name, model_name = model_split
|
|
|
|
assert source_name in ('timm', 'hf_hub')
|
|
|
|
return source_name, model_name
|
|
|
|
|
|
|
|
|
|
|
|
def safe_model_name(model_name, remove_source=True):
|
|
|
|
def make_safe(name):
|
|
|
|
return ''.join(c if c.isalnum() else '_' for c in name).rstrip('_')
|
|
|
|
if remove_source:
|
|
|
|
model_name = split_model_name(model_name)[-1]
|
|
|
|
return make_safe(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
def create_model(
|
|
|
|
model_name,
|
|
|
|
pretrained=False,
|
|
|
|
checkpoint_path='',
|
|
|
|
scriptable=None,
|
|
|
|
exportable=None,
|
|
|
|
no_jit=None,
|
|
|
|
**kwargs):
|
|
|
|
"""Create a model
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model_name (str): name of model to instantiate
|
|
|
|
pretrained (bool): load pretrained ImageNet-1k weights if true
|
|
|
|
checkpoint_path (str): path of checkpoint to load after model is initialized
|
|
|
|
scriptable (bool): set layer config so that model is jit scriptable (not working for all models yet)
|
|
|
|
exportable (bool): set layer config so that model is traceable / ONNX exportable (not fully impl/obeyed yet)
|
|
|
|
no_jit (bool): set layer config so that model doesn't utilize jit scripted layers (so far activations only)
|
|
|
|
|
|
|
|
Keyword Args:
|
|
|
|
drop_rate (float): dropout rate for training (default: 0.0)
|
|
|
|
global_pool (str): global pool type (default: 'avg')
|
|
|
|
**: other kwargs are model specific
|
|
|
|
"""
|
|
|
|
source_name, model_name = split_model_name(model_name)
|
|
|
|
|
|
|
|
# Only EfficientNet and MobileNetV3 models have support for batchnorm params or drop_connect_rate passed as args
|
|
|
|
is_efficientnet = is_model_in_modules(model_name, ['efficientnet', 'mobilenetv3'])
|
|
|
|
if not is_efficientnet:
|
|
|
|
kwargs.pop('bn_tf', None)
|
|
|
|
kwargs.pop('bn_momentum', None)
|
|
|
|
kwargs.pop('bn_eps', None)
|
|
|
|
|
|
|
|
# handle backwards compat with drop_connect -> drop_path change
|
|
|
|
drop_connect_rate = kwargs.pop('drop_connect_rate', None)
|
|
|
|
if drop_connect_rate is not None and kwargs.get('drop_path_rate', None) is None:
|
|
|
|
print("WARNING: 'drop_connect' as an argument is deprecated, please use 'drop_path'."
|
|
|
|
" Setting drop_path to %f." % drop_connect_rate)
|
|
|
|
kwargs['drop_path_rate'] = drop_connect_rate
|
|
|
|
|
|
|
|
# Parameters that aren't supported by all models or are intended to only override model defaults if set
|
|
|
|
# should default to None in command line args/cfg. Remove them if they are present and not set so that
|
|
|
|
# non-supporting models don't break and default args remain in effect.
|
|
|
|
kwargs = {k: v for k, v in kwargs.items() if v is not None}
|
|
|
|
|
|
|
|
if source_name == 'hf_hub':
|
|
|
|
# For model names specified in the form `hf_hub:path/architecture_name#revision`,
|
|
|
|
# load model weights + default_cfg from Hugging Face hub.
|
|
|
|
hf_default_cfg, model_name = load_model_config_from_hf(model_name)
|
|
|
|
kwargs['external_default_cfg'] = hf_default_cfg # FIXME revamp default_cfg interface someday
|
|
|
|
|
|
|
|
if is_model(model_name):
|
|
|
|
create_fn = model_entrypoint(model_name)
|
|
|
|
else:
|
|
|
|
raise RuntimeError('Unknown model (%s)' % model_name)
|
|
|
|
|
|
|
|
with set_layer_config(scriptable=scriptable, exportable=exportable, no_jit=no_jit):
|
|
|
|
model = create_fn(pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
if checkpoint_path:
|
|
|
|
load_checkpoint(model, checkpoint_path)
|
|
|
|
|
|
|
|
return model
|