You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
199 lines
6.4 KiB
199 lines
6.4 KiB
4 years ago
|
# Summary
|
||
|
|
||
|
**MobileNetV3** is a convolutional neural network that is designed for mobile phone CPUs. The network design includes the use of a [hard swish activation](https://paperswithcode.com/method/hard-swish) and [squeeze-and-excitation](https://paperswithcode.com/method/squeeze-and-excitation-block) modules in the [MBConv blocks](https://paperswithcode.com/method/inverted-residual-block).
|
||
|
|
||
|
## How do I use this model on an image?
|
||
|
To load a pretrained model:
|
||
|
|
||
|
```python
|
||
|
import timm
|
||
4 years ago
|
model = timm.create_model('mobilenetv3_large_100', pretrained=True)
|
||
4 years ago
|
model.eval()
|
||
|
```
|
||
|
|
||
|
To load and preprocess the image:
|
||
|
```python
|
||
|
import urllib
|
||
|
from PIL import Image
|
||
|
from timm.data import resolve_data_config
|
||
|
from timm.data.transforms_factory import create_transform
|
||
|
|
||
|
config = resolve_data_config({}, model=model)
|
||
|
transform = create_transform(**config)
|
||
|
|
||
|
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
|
||
|
urllib.request.urlretrieve(url, filename)
|
||
|
img = Image.open(filename).convert('RGB')
|
||
|
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
|
||
|
```
|
||
|
|
||
|
To get the model predictions:
|
||
|
```python
|
||
|
import torch
|
||
|
with torch.no_grad():
|
||
|
out = model(tensor)
|
||
|
probabilities = torch.nn.functional.softmax(out[0], dim=0)
|
||
|
print(probabilities.shape)
|
||
|
# prints: torch.Size([1000])
|
||
|
```
|
||
|
|
||
|
To get the top-5 predictions class names:
|
||
|
```python
|
||
|
# Get imagenet class mappings
|
||
|
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
|
||
|
urllib.request.urlretrieve(url, filename)
|
||
|
with open("imagenet_classes.txt", "r") as f:
|
||
|
categories = [s.strip() for s in f.readlines()]
|
||
|
|
||
|
# Print top categories per image
|
||
|
top5_prob, top5_catid = torch.topk(probabilities, 5)
|
||
|
for i in range(top5_prob.size(0)):
|
||
|
print(categories[top5_catid[i]], top5_prob[i].item())
|
||
|
# prints class names and probabilities like:
|
||
|
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
|
||
|
```
|
||
|
|
||
4 years ago
|
Replace the model name with the variant you want to use, e.g. `mobilenetv3_large_100`. You can find the IDs in the model summaries at the top of this page.
|
||
4 years ago
|
|
||
|
To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.
|
||
|
|
||
|
## How do I finetune this model?
|
||
|
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
|
||
|
```python
|
||
4 years ago
|
model = timm.create_model('mobilenetv3_large_100', pretrained=True).reset_classifier(NUM_FINETUNE_CLASSES)
|
||
4 years ago
|
```
|
||
|
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
|
||
|
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
|
||
|
|
||
|
## How do I train this model?
|
||
|
|
||
|
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
|
||
|
|
||
|
## Citation
|
||
|
|
||
|
```BibTeX
|
||
|
@article{DBLP:journals/corr/abs-1905-02244,
|
||
|
author = {Andrew Howard and
|
||
|
Mark Sandler and
|
||
|
Grace Chu and
|
||
|
Liang{-}Chieh Chen and
|
||
|
Bo Chen and
|
||
|
Mingxing Tan and
|
||
|
Weijun Wang and
|
||
|
Yukun Zhu and
|
||
|
Ruoming Pang and
|
||
|
Vijay Vasudevan and
|
||
|
Quoc V. Le and
|
||
|
Hartwig Adam},
|
||
|
title = {Searching for MobileNetV3},
|
||
|
journal = {CoRR},
|
||
|
volume = {abs/1905.02244},
|
||
|
year = {2019},
|
||
|
url = {http://arxiv.org/abs/1905.02244},
|
||
|
archivePrefix = {arXiv},
|
||
|
eprint = {1905.02244},
|
||
|
timestamp = {Tue, 12 Jan 2021 15:30:06 +0100},
|
||
|
biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib},
|
||
|
bibsource = {dblp computer science bibliography, https://dblp.org}
|
||
|
}
|
||
|
```
|
||
|
|
||
|
<!--
|
||
4 years ago
|
Type: model-index
|
||
|
Collections:
|
||
|
- Name: MobileNet V3
|
||
|
Paper:
|
||
|
Title: Searching for MobileNetV3
|
||
|
URL: https://paperswithcode.com/paper/searching-for-mobilenetv3
|
||
4 years ago
|
Models:
|
||
4 years ago
|
- Name: mobilenetv3_large_100
|
||
|
In Collection: MobileNet V3
|
||
4 years ago
|
Metadata:
|
||
4 years ago
|
FLOPs: 287193752
|
||
|
Parameters: 5480000
|
||
|
File Size: 22076443
|
||
4 years ago
|
Architecture:
|
||
|
- 1x1 Convolution
|
||
|
- Batch Normalization
|
||
|
- Convolution
|
||
|
- Dense Connections
|
||
|
- Depthwise Separable Convolution
|
||
|
- Dropout
|
||
|
- Global Average Pooling
|
||
|
- Hard Swish
|
||
|
- Inverted Residual Block
|
||
|
- ReLU
|
||
|
- Residual Connection
|
||
|
- Softmax
|
||
|
- Squeeze-and-Excitation Block
|
||
|
Tasks:
|
||
|
- Image Classification
|
||
4 years ago
|
Training Techniques:
|
||
|
- RMSProp
|
||
|
- Weight Decay
|
||
|
Training Data:
|
||
|
- ImageNet
|
||
|
Training Resources: 4x4 TPU Pod
|
||
|
ID: mobilenetv3_large_100
|
||
4 years ago
|
LR: 0.1
|
||
|
Dropout: 0.8
|
||
|
Crop Pct: '0.875'
|
||
|
Momentum: 0.9
|
||
4 years ago
|
Batch Size: 4096
|
||
4 years ago
|
Image Size: '224'
|
||
|
Weight Decay: 1.0e-05
|
||
|
Interpolation: bicubic
|
||
4 years ago
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L363
|
||
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth
|
||
|
Results:
|
||
|
- Task: Image Classification
|
||
|
Dataset: ImageNet
|
||
|
Metrics:
|
||
|
Top 1 Accuracy: 75.77%
|
||
|
Top 5 Accuracy: 92.54%
|
||
|
- Name: mobilenetv3_rw
|
||
4 years ago
|
In Collection: MobileNet V3
|
||
|
Metadata:
|
||
4 years ago
|
FLOPs: 287190638
|
||
|
Parameters: 5480000
|
||
|
File Size: 22064048
|
||
4 years ago
|
Architecture:
|
||
|
- 1x1 Convolution
|
||
|
- Batch Normalization
|
||
|
- Convolution
|
||
|
- Dense Connections
|
||
|
- Depthwise Separable Convolution
|
||
|
- Dropout
|
||
|
- Global Average Pooling
|
||
|
- Hard Swish
|
||
|
- Inverted Residual Block
|
||
|
- ReLU
|
||
|
- Residual Connection
|
||
|
- Softmax
|
||
|
- Squeeze-and-Excitation Block
|
||
|
Tasks:
|
||
|
- Image Classification
|
||
4 years ago
|
Training Techniques:
|
||
|
- RMSProp
|
||
|
- Weight Decay
|
||
|
Training Data:
|
||
|
- ImageNet
|
||
|
Training Resources: 4x4 TPU Pod
|
||
|
ID: mobilenetv3_rw
|
||
4 years ago
|
LR: 0.1
|
||
|
Dropout: 0.8
|
||
|
Crop Pct: '0.875'
|
||
|
Momentum: 0.9
|
||
4 years ago
|
Batch Size: 4096
|
||
4 years ago
|
Image Size: '224'
|
||
|
Weight Decay: 1.0e-05
|
||
|
Interpolation: bicubic
|
||
4 years ago
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L384
|
||
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth
|
||
|
Results:
|
||
|
- Task: Image Classification
|
||
|
Dataset: ImageNet
|
||
|
Metrics:
|
||
|
Top 1 Accuracy: 75.62%
|
||
|
Top 5 Accuracy: 92.71%
|
||
4 years ago
|
-->
|