|
|
|
"""PyTorch SelecSLS Net example for ImageNet Classification
|
|
|
|
License: CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/legalcode)
|
|
|
|
Author: Dushyant Mehta (@mehtadushy)
|
|
|
|
|
|
|
|
SelecSLS (core) Network Architecture as proposed in "XNect: Real-time Multi-person 3D
|
|
|
|
Human Pose Estimation with a Single RGB Camera, Mehta et al."
|
|
|
|
https://arxiv.org/abs/1907.00837
|
|
|
|
|
|
|
|
Based on ResNet implementation in https://github.com/rwightman/pytorch-image-models
|
|
|
|
and SelecSLS Net implementation in https://github.com/mehtadushy/SelecSLS-Pytorch
|
|
|
|
"""
|
|
|
|
import math
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
from .registry import register_model
|
|
|
|
from .helpers import load_pretrained
|
|
|
|
from .adaptive_avgmax_pool import SelectAdaptivePool2d
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = ['SelecSLS'] # model_registry will add each entrypoint fn to this
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url,
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (3, 3),
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'first_conv': 'stem', 'classifier': 'fc',
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
'selecsls42': _cfg(
|
|
|
|
url='',
|
|
|
|
interpolation='bicubic'),
|
|
|
|
'selecsls42_B': _cfg(
|
|
|
|
url='http://gvv.mpi-inf.mpg.de/projects/XNect/models/SelecSLS42_B.pth',
|
|
|
|
interpolation='bicubic'),
|
|
|
|
'selecsls60': _cfg(
|
|
|
|
url='',
|
|
|
|
interpolation='bicubic'),
|
|
|
|
'selecsls60_B': _cfg(
|
|
|
|
url='http://gvv.mpi-inf.mpg.de/projects/XNect/models/SelecSLS60_B.pth',
|
|
|
|
interpolation='bicubic'),
|
|
|
|
'selecsls84': _cfg(
|
|
|
|
url='',
|
|
|
|
interpolation='bicubic'),
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def conv_bn(inp, oup, stride):
|
|
|
|
return nn.Sequential(
|
|
|
|
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
|
|
|
|
nn.BatchNorm2d(oup),
|
|
|
|
nn.ReLU(inplace=True)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def conv_1x1_bn(inp, oup):
|
|
|
|
return nn.Sequential(
|
|
|
|
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
|
|
|
|
nn.BatchNorm2d(oup),
|
|
|
|
nn.ReLU(inplace=True)
|
|
|
|
)
|
|
|
|
|
|
|
|
class SelecSLSBlock(nn.Module):
|
|
|
|
def __init__(self, inp, skip, k, oup, isFirst, stride):
|
|
|
|
super(SelecSLSBlock, self).__init__()
|
|
|
|
self.stride = stride
|
|
|
|
self.isFirst = isFirst
|
|
|
|
assert stride in [1, 2]
|
|
|
|
|
|
|
|
#Process input with 4 conv blocks with the same number of input and output channels
|
|
|
|
self.conv1 = nn.Sequential(
|
|
|
|
nn.Conv2d(inp, k, 3, stride, 1,groups= 1, bias=False, dilation=1),
|
|
|
|
nn.BatchNorm2d(k),
|
|
|
|
nn.ReLU(inplace=True)
|
|
|
|
)
|
|
|
|
self.conv2 = nn.Sequential(
|
|
|
|
nn.Conv2d(k, k, 1, 1, 0,groups= 1, bias=False, dilation=1),
|
|
|
|
nn.BatchNorm2d(k),
|
|
|
|
nn.ReLU(inplace=True)
|
|
|
|
)
|
|
|
|
self.conv3 = nn.Sequential(
|
|
|
|
nn.Conv2d(k, k//2, 3, 1, 1,groups= 1, bias=False, dilation=1),
|
|
|
|
nn.BatchNorm2d(k//2),
|
|
|
|
nn.ReLU(inplace=True)
|
|
|
|
)
|
|
|
|
self.conv4 = nn.Sequential(
|
|
|
|
nn.Conv2d(k//2, k, 1, 1, 0,groups= 1, bias=False, dilation=1),
|
|
|
|
nn.BatchNorm2d(k),
|
|
|
|
nn.ReLU(inplace=True)
|
|
|
|
)
|
|
|
|
self.conv5 = nn.Sequential(
|
|
|
|
nn.Conv2d(k, k//2, 3, 1, 1,groups= 1, bias=False, dilation=1),
|
|
|
|
nn.BatchNorm2d(k//2),
|
|
|
|
nn.ReLU(inplace=True)
|
|
|
|
)
|
|
|
|
self.conv6 = nn.Sequential(
|
|
|
|
nn.Conv2d(2*k + (0 if isFirst else skip), oup, 1, 1, 0,groups= 1, bias=False, dilation=1),
|
|
|
|
nn.BatchNorm2d(oup),
|
|
|
|
nn.ReLU(inplace=True)
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
assert isinstance(x,list)
|
|
|
|
assert len(x) in [1,2]
|
|
|
|
|
|
|
|
d1 = self.conv1(x[0])
|
|
|
|
d2 = self.conv3(self.conv2(d1))
|
|
|
|
d3 = self.conv5(self.conv4(d2))
|
|
|
|
if self.isFirst:
|
|
|
|
out = self.conv6(torch.cat([d1, d2, d3], 1))
|
|
|
|
return [out, out]
|
|
|
|
else:
|
|
|
|
return [self.conv6(torch.cat([d1, d2, d3, x[1]], 1)) , x[1]]
|
|
|
|
|
|
|
|
class SelecSLS(nn.Module):
|
|
|
|
"""SelecSLS42 / SelecSLS60 / SelecSLS84
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
cfg : network config
|
|
|
|
String indicating the network config
|
|
|
|
num_classes : int, default 1000
|
|
|
|
Number of classification classes.
|
|
|
|
in_chans : int, default 3
|
|
|
|
Number of input (color) channels.
|
|
|
|
drop_rate : float, default 0.
|
|
|
|
Dropout probability before classifier, for training
|
|
|
|
global_pool : str, default 'avg'
|
|
|
|
Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax'
|
|
|
|
"""
|
|
|
|
def __init__(self, cfg='selecsls60', num_classes=1000, in_chans=3,
|
|
|
|
drop_rate=0.0, global_pool='avg'):
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
super(SelecSLS, self).__init__()
|
|
|
|
|
|
|
|
self.stem = conv_bn(in_chans, 32, 2)
|
|
|
|
#Core Network
|
|
|
|
self.features = []
|
|
|
|
if cfg=='selecsls42':
|
|
|
|
self.block = SelecSLSBlock
|
|
|
|
#Define configuration of the network after the initial neck
|
|
|
|
self.selecSLS_config = [
|
|
|
|
#inp,skip, k, oup, isFirst, stride
|
|
|
|
[ 32, 0, 64, 64, True, 2],
|
|
|
|
[ 64, 64, 64, 128, False, 1],
|
|
|
|
[128, 0, 144, 144, True, 2],
|
|
|
|
[144, 144, 144, 288, False, 1],
|
|
|
|
[288, 0, 304, 304, True, 2],
|
|
|
|
[304, 304, 304, 480, False, 1],
|
|
|
|
]
|
|
|
|
#Head can be replaced with alternative configurations depending on the problem
|
|
|
|
self.head = nn.Sequential(
|
|
|
|
conv_bn(480, 960, 2),
|
|
|
|
conv_bn(960, 1024, 1),
|
|
|
|
conv_bn(1024, 1024, 2),
|
|
|
|
conv_1x1_bn(1024, 1280),
|
|
|
|
)
|
|
|
|
self.num_features = 1280
|
|
|
|
elif cfg=='selecsls42_B':
|
|
|
|
self.block = SelecSLSBlock
|
|
|
|
#Define configuration of the network after the initial neck
|
|
|
|
self.selecSLS_config = [
|
|
|
|
#inp,skip, k, oup, isFirst, stride
|
|
|
|
[ 32, 0, 64, 64, True, 2],
|
|
|
|
[ 64, 64, 64, 128, False, 1],
|
|
|
|
[128, 0, 144, 144, True, 2],
|
|
|
|
[144, 144, 144, 288, False, 1],
|
|
|
|
[288, 0, 304, 304, True, 2],
|
|
|
|
[304, 304, 304, 480, False, 1],
|
|
|
|
]
|
|
|
|
#Head can be replaced with alternative configurations depending on the problem
|
|
|
|
self.head = nn.Sequential(
|
|
|
|
conv_bn(480, 960, 2),
|
|
|
|
conv_bn(960, 1024, 1),
|
|
|
|
conv_bn(1024, 1280, 2),
|
|
|
|
conv_1x1_bn(1280, 1024),
|
|
|
|
)
|
|
|
|
self.num_features = 1024
|
|
|
|
elif cfg=='selecsls60':
|
|
|
|
self.block = SelecSLSBlock
|
|
|
|
#Define configuration of the network after the initial neck
|
|
|
|
self.selecSLS_config = [
|
|
|
|
#inp,skip, k, oup, isFirst, stride
|
|
|
|
[ 32, 0, 64, 64, True, 2],
|
|
|
|
[ 64, 64, 64, 128, False, 1],
|
|
|
|
[128, 0, 128, 128, True, 2],
|
|
|
|
[128, 128, 128, 128, False, 1],
|
|
|
|
[128, 128, 128, 288, False, 1],
|
|
|
|
[288, 0, 288, 288, True, 2],
|
|
|
|
[288, 288, 288, 288, False, 1],
|
|
|
|
[288, 288, 288, 288, False, 1],
|
|
|
|
[288, 288, 288, 416, False, 1],
|
|
|
|
]
|
|
|
|
#Head can be replaced with alternative configurations depending on the problem
|
|
|
|
self.head = nn.Sequential(
|
|
|
|
conv_bn(416, 756, 2),
|
|
|
|
conv_bn(756, 1024, 1),
|
|
|
|
conv_bn(1024, 1024, 2),
|
|
|
|
conv_1x1_bn(1024, 1280),
|
|
|
|
)
|
|
|
|
self.num_features = 1280
|
|
|
|
elif cfg=='selecsls60_B':
|
|
|
|
self.block = SelecSLSBlock
|
|
|
|
#Define configuration of the network after the initial neck
|
|
|
|
self.selecSLS_config = [
|
|
|
|
#inp,skip, k, oup, isFirst, stride
|
|
|
|
[ 32, 0, 64, 64, True, 2],
|
|
|
|
[ 64, 64, 64, 128, False, 1],
|
|
|
|
[128, 0, 128, 128, True, 2],
|
|
|
|
[128, 128, 128, 128, False, 1],
|
|
|
|
[128, 128, 128, 288, False, 1],
|
|
|
|
[288, 0, 288, 288, True, 2],
|
|
|
|
[288, 288, 288, 288, False, 1],
|
|
|
|
[288, 288, 288, 288, False, 1],
|
|
|
|
[288, 288, 288, 416, False, 1],
|
|
|
|
]
|
|
|
|
#Head can be replaced with alternative configurations depending on the problem
|
|
|
|
self.head = nn.Sequential(
|
|
|
|
conv_bn(416, 756, 2),
|
|
|
|
conv_bn(756, 1024, 1),
|
|
|
|
conv_bn(1024, 1280, 2),
|
|
|
|
conv_1x1_bn(1280, 1024),
|
|
|
|
)
|
|
|
|
self.num_features = 1024
|
|
|
|
elif cfg=='selecsls84':
|
|
|
|
self.block = SelecSLSBlock
|
|
|
|
#Define configuration of the network after the initial neck
|
|
|
|
self.selecSLS_config = [
|
|
|
|
#inp,skip, k, oup, isFirst, stride
|
|
|
|
[ 32, 0, 64, 64, True, 2],
|
|
|
|
[ 64, 64, 64, 144, False, 1],
|
|
|
|
[144, 0, 144, 144, True, 2],
|
|
|
|
[144, 144, 144, 144, False, 1],
|
|
|
|
[144, 144, 144, 144, False, 1],
|
|
|
|
[144, 144, 144, 144, False, 1],
|
|
|
|
[144, 144, 144, 304, False, 1],
|
|
|
|
[304, 0, 304, 304, True, 2],
|
|
|
|
[304, 304, 304, 304, False, 1],
|
|
|
|
[304, 304, 304, 304, False, 1],
|
|
|
|
[304, 304, 304, 304, False, 1],
|
|
|
|
[304, 304, 304, 304, False, 1],
|
|
|
|
[304, 304, 304, 512, False, 1],
|
|
|
|
]
|
|
|
|
#Head can be replaced with alternative configurations depending on the problem
|
|
|
|
self.head = nn.Sequential(
|
|
|
|
conv_bn(512, 960, 2),
|
|
|
|
conv_bn(960, 1024, 1),
|
|
|
|
conv_bn(1024, 1024, 2),
|
|
|
|
conv_1x1_bn(1024, 1280),
|
|
|
|
)
|
|
|
|
self.num_features = 1280
|
|
|
|
else:
|
|
|
|
raise ValueError('Invalid net configuration '+cfg+' !!!')
|
|
|
|
|
|
|
|
for inp, skip, k, oup, isFirst, stride in self.selecSLS_config:
|
|
|
|
self.features.append(self.block(inp, skip, k, oup, isFirst, stride))
|
|
|
|
self.features = nn.Sequential(*self.features)
|
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
|
|
|
|
|
|
|
|
for n, m in self.named_modules():
|
|
|
|
if isinstance(m, nn.Conv2d):
|
|
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
|
|
nn.init.constant_(m.weight, 1.)
|
|
|
|
nn.init.constant_(m.bias, 0.)
|
|
|
|
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.fc
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
self.num_classes = num_classes
|
|
|
|
del self.fc
|
|
|
|
if num_classes:
|
|
|
|
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
|
|
|
|
else:
|
|
|
|
self.fc = None
|
|
|
|
|
|
|
|
def forward_features(self, x, pool=True):
|
|
|
|
x = self.stem(x)
|
|
|
|
x = self.features([x])
|
|
|
|
x = self.head(x[0])
|
|
|
|
|
|
|
|
if pool:
|
|
|
|
x = self.global_pool(x)
|
|
|
|
x = x.view(x.size(0), -1)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
if self.drop_rate > 0.:
|
|
|
|
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
|
|
|
x = self.fc(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def selecsls42(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a SelecSLS42 model.
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['selecsls42']
|
|
|
|
model = SelecSLS(
|
|
|
|
cfg='selecsls42', num_classes=1000, in_chans=3, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def selecsls42_B(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a SelecSLS42_B model.
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['selecsls42_B']
|
|
|
|
model = SelecSLS(
|
|
|
|
cfg='selecsls42_B', num_classes=1000, in_chans=3,**kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def selecsls60(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a SelecSLS60 model.
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['selecsls60']
|
|
|
|
model = SelecSLS(
|
|
|
|
cfg='selecsls60', num_classes=1000, in_chans=3,**kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def selecsls60_B(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a SelecSLS60_B model.
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['selecsls60_B']
|
|
|
|
model = SelecSLS(
|
|
|
|
cfg='selecsls60_B', num_classes=1000, in_chans=3,**kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def selecsls84(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
"""Constructs a SelecSLS84 model.
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['selecsls84']
|
|
|
|
model = SelecSLS(
|
|
|
|
cfg='selecsls84', num_classes=1000, in_chans=3, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
return model
|
|
|
|
|