|
|
|
import torch.cuda
|
|
|
|
|
|
|
|
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from .mixup import FastCollateMixup
|
|
|
|
from .random_erasing import RandomErasing
|
|
|
|
|
|
|
|
|
|
|
|
class PrefetcherCuda:
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
loader,
|
|
|
|
device: torch.device = torch.device('cuda'),
|
|
|
|
dtype=torch.float32,
|
|
|
|
normalize=True,
|
|
|
|
normalize_shape=(1, 3, 1, 1),
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN,
|
|
|
|
std=IMAGENET_DEFAULT_STD,
|
|
|
|
re_prob=0.,
|
|
|
|
re_mode='const',
|
|
|
|
re_count=1,
|
|
|
|
num_aug_splits=0,
|
|
|
|
):
|
|
|
|
self.loader = loader
|
|
|
|
self.device = device
|
|
|
|
self.dtype = dtype
|
|
|
|
if normalize:
|
|
|
|
self.mean = torch.tensor(
|
|
|
|
[x * 255 for x in mean], dtype=self.dtype, device=self.device).view(normalize_shape)
|
|
|
|
self.std = torch.tensor(
|
|
|
|
[x * 255 for x in std], dtype=self.dtype, device=self.device).view(normalize_shape)
|
|
|
|
else:
|
|
|
|
self.mean = None
|
|
|
|
self.std = None
|
|
|
|
if re_prob > 0.:
|
|
|
|
self.random_erasing = RandomErasing(
|
|
|
|
probability=re_prob, mode=re_mode, count=re_count, num_splits=num_aug_splits, device=device)
|
|
|
|
else:
|
|
|
|
self.random_erasing = None
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
stream = torch.cuda.Stream()
|
|
|
|
first = True
|
|
|
|
|
|
|
|
for next_input, next_target in self.loader:
|
|
|
|
with torch.cuda.stream(stream):
|
|
|
|
next_input = next_input.to(device=self.device, non_blocking=True)
|
|
|
|
next_input = next_input.to(dtype=self.dtype)
|
|
|
|
if self.mean is not None:
|
|
|
|
next_input.sub_(self.mean).div_(self.std)
|
|
|
|
next_target = next_target.to(device=self.device, non_blocking=True)
|
|
|
|
if self.random_erasing is not None:
|
|
|
|
next_input = self.random_erasing(next_input)
|
|
|
|
|
|
|
|
if not first:
|
|
|
|
yield input, target
|
|
|
|
else:
|
|
|
|
first = False
|
|
|
|
|
|
|
|
torch.cuda.current_stream().wait_stream(stream)
|
|
|
|
input = next_input
|
|
|
|
target = next_target
|
|
|
|
|
|
|
|
yield input, target
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.loader)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def sampler(self):
|
|
|
|
return self.loader.sampler
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dataset(self):
|
|
|
|
return self.loader.dataset
|
|
|
|
|
|
|
|
@property
|
|
|
|
def mixup_enabled(self):
|
|
|
|
if isinstance(self.loader.collate_fn, FastCollateMixup):
|
|
|
|
return self.loader.collate_fn.mixup_enabled
|
|
|
|
else:
|
|
|
|
return False
|
|
|
|
|
|
|
|
@mixup_enabled.setter
|
|
|
|
def mixup_enabled(self, x):
|
|
|
|
if isinstance(self.loader.collate_fn, FastCollateMixup):
|
|
|
|
self.loader.collate_fn.mixup_enabled = x
|