43 lines
1.6 KiB
43 lines
1.6 KiB
4 years ago
|
""" Adaptive Gradient Clipping
|
||
|
|
||
|
An impl of AGC, as per (https://arxiv.org/abs/2102.06171):
|
||
|
|
||
|
@article{brock2021high,
|
||
|
author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan},
|
||
|
title={High-Performance Large-Scale Image Recognition Without Normalization},
|
||
|
journal={arXiv preprint arXiv:},
|
||
|
year={2021}
|
||
|
}
|
||
|
|
||
|
Code references:
|
||
|
* Official JAX impl (paper authors): https://github.com/deepmind/deepmind-research/tree/master/nfnets
|
||
|
* Phil Wang's PyTorch gist: https://gist.github.com/lucidrains/0d6560077edac419ab5d3aa29e674d5c
|
||
|
|
||
|
Hacked together by / Copyright 2021 Ross Wightman
|
||
|
"""
|
||
|
import torch
|
||
|
|
||
|
|
||
|
def unitwise_norm(x, norm_type=2.0):
|
||
|
if x.ndim <= 1:
|
||
|
return x.norm(norm_type)
|
||
|
else:
|
||
|
# works for nn.ConvNd and nn,Linear where output dim is first in the kernel/weight tensor
|
||
|
# might need special cases for other weights (possibly MHA) where this may not be true
|
||
|
return x.norm(norm_type, dim=tuple(range(1, x.ndim)), keepdim=True)
|
||
|
|
||
|
|
||
|
def adaptive_clip_grad(parameters, clip_factor=0.01, eps=1e-3, norm_type=2.0):
|
||
|
if isinstance(parameters, torch.Tensor):
|
||
|
parameters = [parameters]
|
||
|
for p in parameters:
|
||
|
if p.grad is None:
|
||
|
continue
|
||
|
p_data = p.detach()
|
||
|
g_data = p.grad.detach()
|
||
|
max_norm = unitwise_norm(p_data, norm_type=norm_type).clamp_(min=eps).mul_(clip_factor)
|
||
|
grad_norm = unitwise_norm(g_data, norm_type=norm_type)
|
||
|
clipped_grad = g_data * (max_norm / grad_norm.clamp(min=1e-6))
|
||
|
new_grads = torch.where(grad_norm < max_norm, g_data, clipped_grad)
|
||
|
p.grad.detach().copy_(new_grads)
|