<!doctype html>
< html lang = "en" class = "no-js" >
< head >
< meta charset = "utf-8" >
< meta name = "viewport" content = "width=device-width,initial-scale=1" >
< meta name = "description" content = "Pretained Image Recognition Models" >
< link rel = "prev" href = "../res2next/" >
< link rel = "next" href = "../resnet-d/" >
< link rel = "icon" href = "../../assets/images/favicon.png" >
< meta name = "generator" content = "mkdocs-1.4.2, mkdocs-material-9.0.2" >
< title > ResNeSt - Pytorch Image Models< / title >
< link rel = "stylesheet" href = "../../assets/stylesheets/main.f56500e0.min.css" >
< link rel = "stylesheet" href = "../../assets/stylesheets/palette.2505c338.min.css" >
< link rel = "preconnect" href = "https://fonts.gstatic.com" crossorigin >
< link rel = "stylesheet" href = "https://fonts.googleapis.com/css?family=Roboto:300,300i,400,400i,700,700i%7CRoboto+Mono:400,400i,700,700i&display=fallback" >
< style > : root { --md-text-font : "Roboto" ; --md-code-font : "Roboto Mono" } < / style >
< script > _ _md _scope = new URL ( "../.." , location ) , _ _md _hash = e => [ ... e ] . reduce ( ( e , _ ) => ( e << 5 ) - e + _ . charCodeAt ( 0 ) , 0 ) , _ _md _get = ( e , _ = localStorage , t = _ _md _scope ) => JSON . parse ( _ . getItem ( t . pathname + "." + e ) ) , _ _md _set = ( e , _ , t = localStorage , a = _ _md _scope ) => { try { t . setItem ( a . pathname + "." + e , JSON . stringify ( _ ) ) } catch ( e ) { } } < / script >
< / head >
< body dir = "ltr" data-md-color-scheme = "default" data-md-color-primary = "" data-md-color-accent = "" >
< input class = "md-toggle" data-md-toggle = "drawer" type = "checkbox" id = "__drawer" autocomplete = "off" >
< input class = "md-toggle" data-md-toggle = "search" type = "checkbox" id = "__search" autocomplete = "off" >
< label class = "md-overlay" for = "__drawer" > < / label >
< div data-md-component = "skip" >
< a href = "#resnest" class = "md-skip" >
Skip to content
< / a >
< / div >
< div data-md-component = "announce" >
< / div >
< header class = "md-header" data-md-component = "header" >
< nav class = "md-header__inner md-grid" aria-label = "Header" >
< a href = "../.." title = "Pytorch Image Models" class = "md-header__button md-logo" aria-label = "Pytorch Image Models" data-md-component = "logo" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M12 8a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3 3 3 0 0 0 3 3m0 3.54C9.64 9.35 6.5 8 3 8v11c3.5 0 6.64 1.35 9 3.54 2.36-2.19 5.5-3.54 9-3.54V8c-3.5 0-6.64 1.35-9 3.54Z" / > < / svg >
< / a >
< label class = "md-header__button md-icon" for = "__drawer" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z" / > < / svg >
< / label >
< div class = "md-header__title" data-md-component = "header-title" >
< div class = "md-header__ellipsis" >
< div class = "md-header__topic" >
< span class = "md-ellipsis" >
Pytorch Image Models
< / span >
< / div >
< div class = "md-header__topic" data-md-component = "header-topic" >
< span class = "md-ellipsis" >
ResNeSt
< / span >
< / div >
< / div >
< / div >
< label class = "md-header__button md-icon" for = "__search" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z" / > < / svg >
< / label >
< div class = "md-search" data-md-component = "search" role = "dialog" >
< label class = "md-search__overlay" for = "__search" > < / label >
< div class = "md-search__inner" role = "search" >
< form class = "md-search__form" name = "search" >
< input type = "text" class = "md-search__input" name = "query" aria-label = "Search" placeholder = "Search" autocapitalize = "off" autocorrect = "off" autocomplete = "off" spellcheck = "false" data-md-component = "search-query" required >
< label class = "md-search__icon md-icon" for = "__search" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z" / > < / svg >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z" / > < / svg >
< / label >
< nav class = "md-search__options" aria-label = "Search" >
< button type = "reset" class = "md-search__icon md-icon" title = "Clear" aria-label = "Clear" tabindex = "-1" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z" / > < / svg >
< / button >
< / nav >
< / form >
< div class = "md-search__output" >
< div class = "md-search__scrollwrap" data-md-scrollfix >
< div class = "md-search-result" data-md-component = "search-result" >
< div class = "md-search-result__meta" >
Initializing search
< / div >
< ol class = "md-search-result__list" > < / ol >
< / div >
< / div >
< / div >
< / div >
< / div >
< div class = "md-header__source" >
< a href = "https://github.com/rwightman/pytorch-image-models" title = "Go to repository" class = "md-source" data-md-component = "source" >
< div class = "md-source__icon md-icon" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 448 512" > <!-- ! Font Awesome Free 6.2.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2022 Fonticons, Inc. --> < path d = "M439.55 236.05 244 40.45a28.87 28.87 0 0 0-40.81 0l-40.66 40.63 51.52 51.52c27.06-9.14 52.68 16.77 43.39 43.68l49.66 49.66c34.23-11.8 61.18 31 35.47 56.69-26.49 26.49-70.21-2.87-56-37.34L240.22 199v121.85c25.3 12.54 22.26 41.85 9.08 55a34.34 34.34 0 0 1-48.55 0c-17.57-17.6-11.07-46.91 11.25-56v-123c-20.8-8.51-24.6-30.74-18.64-45L142.57 101 8.45 235.14a28.86 28.86 0 0 0 0 40.81l195.61 195.6a28.86 28.86 0 0 0 40.8 0l194.69-194.69a28.86 28.86 0 0 0 0-40.81z" / > < / svg >
< / div >
< div class = "md-source__repository" >
rwightman/pytorch-image-models
< / div >
< / a >
< / div >
< / nav >
< / header >
< div class = "md-container" data-md-component = "container" >
< main class = "md-main" data-md-component = "main" >
< div class = "md-main__inner md-grid" >
< div class = "md-sidebar md-sidebar--primary" data-md-component = "sidebar" data-md-type = "navigation" >
< div class = "md-sidebar__scrollwrap" >
< div class = "md-sidebar__inner" >
< nav class = "md-nav md-nav--primary" aria-label = "Navigation" data-md-level = "0" >
< label class = "md-nav__title" for = "__drawer" >
< a href = "../.." title = "Pytorch Image Models" class = "md-nav__button md-logo" aria-label = "Pytorch Image Models" data-md-component = "logo" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 24 24" > < path d = "M12 8a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3 3 3 0 0 0 3 3m0 3.54C9.64 9.35 6.5 8 3 8v11c3.5 0 6.64 1.35 9 3.54 2.36-2.19 5.5-3.54 9-3.54V8c-3.5 0-6.64 1.35-9 3.54Z" / > < / svg >
< / a >
Pytorch Image Models
< / label >
< div class = "md-nav__source" >
< a href = "https://github.com/rwightman/pytorch-image-models" title = "Go to repository" class = "md-source" data-md-component = "source" >
< div class = "md-source__icon md-icon" >
< svg xmlns = "http://www.w3.org/2000/svg" viewBox = "0 0 448 512" > <!-- ! Font Awesome Free 6.2.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2022 Fonticons, Inc. --> < path d = "M439.55 236.05 244 40.45a28.87 28.87 0 0 0-40.81 0l-40.66 40.63 51.52 51.52c27.06-9.14 52.68 16.77 43.39 43.68l49.66 49.66c34.23-11.8 61.18 31 35.47 56.69-26.49 26.49-70.21-2.87-56-37.34L240.22 199v121.85c25.3 12.54 22.26 41.85 9.08 55a34.34 34.34 0 0 1-48.55 0c-17.57-17.6-11.07-46.91 11.25-56v-123c-20.8-8.51-24.6-30.74-18.64-45L142.57 101 8.45 235.14a28.86 28.86 0 0 0 0 40.81l195.61 195.6a28.86 28.86 0 0 0 40.8 0l194.69-194.69a28.86 28.86 0 0 0 0-40.81z" / > < / svg >
< / div >
< div class = "md-source__repository" >
rwightman/pytorch-image-models
< / div >
< / a >
< / div >
< ul class = "md-nav__list" data-md-scrollfix >
< li class = "md-nav__item" >
< a href = "../.." class = "md-nav__link" >
Getting Started
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../" class = "md-nav__link" >
Model Summaries
< / a >
< / li >
< li class = "md-nav__item md-nav__item--active md-nav__item--nested" >
< input class = "md-nav__toggle md-toggle" data-md-toggle = "__nav_3" type = "checkbox" id = "__nav_3" checked >
< label class = "md-nav__link" for = "__nav_3" >
Model Pages
< span class = "md-nav__icon md-icon" > < / span >
< / label >
< nav class = "md-nav" aria-label = "Model Pages" data-md-level = "1" >
< label class = "md-nav__title" for = "__nav_3" >
< span class = "md-nav__icon md-icon" > < / span >
Model Pages
< / label >
< ul class = "md-nav__list" data-md-scrollfix >
< li class = "md-nav__item" >
< a href = "../adversarial-inception-v3/" class = "md-nav__link" >
Adversarial Inception v3
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../advprop/" class = "md-nav__link" >
AdvProp (EfficientNet)
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../big-transfer/" class = "md-nav__link" >
Big Transfer (BiT)
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../csp-darknet/" class = "md-nav__link" >
CSP-DarkNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../csp-resnet/" class = "md-nav__link" >
CSP-ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../csp-resnext/" class = "md-nav__link" >
CSP-ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../densenet/" class = "md-nav__link" >
DenseNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../dla/" class = "md-nav__link" >
Deep Layer Aggregation
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../dpn/" class = "md-nav__link" >
Dual Path Network (DPN)
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../ecaresnet/" class = "md-nav__link" >
ECA-ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../efficientnet-pruned/" class = "md-nav__link" >
EfficientNet (Knapsack Pruned)
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../efficientnet/" class = "md-nav__link" >
EfficientNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../ensemble-adversarial/" class = "md-nav__link" >
Ensemble Adversarial Inception ResNet v2
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../ese-vovnet/" class = "md-nav__link" >
ESE-VoVNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../fbnet/" class = "md-nav__link" >
FBNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../gloun-inception-v3/" class = "md-nav__link" >
(Gluon) Inception v3
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../gloun-resnet/" class = "md-nav__link" >
(Gluon) ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../gloun-resnext/" class = "md-nav__link" >
(Gluon) ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../gloun-senet/" class = "md-nav__link" >
(Gluon) SENet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../gloun-seresnext/" class = "md-nav__link" >
(Gluon) SE-ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../gloun-xception/" class = "md-nav__link" >
(Gluon) Xception
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../hrnet/" class = "md-nav__link" >
HRNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../ig-resnext/" class = "md-nav__link" >
Instagram ResNeXt WSL
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../inception-resnet-v2/" class = "md-nav__link" >
Inception ResNet v2
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../inception-v3/" class = "md-nav__link" >
Inception v3
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../inception-v4/" class = "md-nav__link" >
Inception v4
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../legacy-se-resnet/" class = "md-nav__link" >
(Legacy) SE-ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../legacy-se-resnext/" class = "md-nav__link" >
(Legacy) SE-ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../legacy-senet/" class = "md-nav__link" >
(Legacy) SENet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../mixnet/" class = "md-nav__link" >
MixNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../mnasnet/" class = "md-nav__link" >
MnasNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../mobilenet-v2/" class = "md-nav__link" >
MobileNet v2
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../mobilenet-v3/" class = "md-nav__link" >
MobileNet v3
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../nasnet/" class = "md-nav__link" >
NASNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../noisy-student/" class = "md-nav__link" >
Noisy Student (EfficientNet)
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../pnasnet/" class = "md-nav__link" >
PNASNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../regnetx/" class = "md-nav__link" >
RegNetX
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../regnety/" class = "md-nav__link" >
RegNetY
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../res2net/" class = "md-nav__link" >
Res2Net
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../res2next/" class = "md-nav__link" >
Res2NeXt
< / a >
< / li >
< li class = "md-nav__item md-nav__item--active" >
< input class = "md-nav__toggle md-toggle" data-md-toggle = "toc" type = "checkbox" id = "__toc" >
< label class = "md-nav__link md-nav__link--active" for = "__toc" >
ResNeSt
< span class = "md-nav__icon md-icon" > < / span >
< / label >
< a href = "./" class = "md-nav__link md-nav__link--active" >
ResNeSt
< / a >
< nav class = "md-nav md-nav--secondary" aria-label = "Table of contents" >
< label class = "md-nav__title" for = "__toc" >
< span class = "md-nav__icon md-icon" > < / span >
Table of contents
< / label >
< ul class = "md-nav__list" data-md-component = "toc" data-md-scrollfix >
< li class = "md-nav__item" >
< a href = "#how-do-i-use-this-model-on-an-image" class = "md-nav__link" >
How do I use this model on an image?
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#how-do-i-finetune-this-model" class = "md-nav__link" >
How do I finetune this model?
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#how-do-i-train-this-model" class = "md-nav__link" >
How do I train this model?
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#citation" class = "md-nav__link" >
Citation
< / a >
< / li >
< / ul >
< / nav >
< / li >
< li class = "md-nav__item" >
< a href = "../resnet-d/" class = "md-nav__link" >
ResNet-D
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../resnet/" class = "md-nav__link" >
ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../resnext/" class = "md-nav__link" >
ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../rexnet/" class = "md-nav__link" >
RexNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../se-resnet/" class = "md-nav__link" >
SE-ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../selecsls/" class = "md-nav__link" >
SelecSLS
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../seresnext/" class = "md-nav__link" >
SE-ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../skresnet/" class = "md-nav__link" >
SK-ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../skresnext/" class = "md-nav__link" >
SK-ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../spnasnet/" class = "md-nav__link" >
SPNASNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../ssl-resnet/" class = "md-nav__link" >
SSL ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../ssl-resnext/" class = "md-nav__link" >
SSL ResNeXT
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../swsl-resnet/" class = "md-nav__link" >
SWSL ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../swsl-resnext/" class = "md-nav__link" >
SWSL ResNeXt
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../tf-efficientnet-condconv/" class = "md-nav__link" >
(Tensorflow) EfficientNet CondConv
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../tf-efficientnet-lite/" class = "md-nav__link" >
(Tensorflow) EfficientNet Lite
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../tf-efficientnet/" class = "md-nav__link" >
(Tensorflow) EfficientNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../tf-inception-v3/" class = "md-nav__link" >
(Tensorflow) Inception v3
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../tf-mixnet/" class = "md-nav__link" >
(Tensorflow) MixNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../tf-mobilenet-v3/" class = "md-nav__link" >
(Tensorflow) MobileNet v3
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../tresnet/" class = "md-nav__link" >
TResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../vision-transformer/" class = "md-nav__link" >
Vision Transformer (ViT)
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../wide-resnet/" class = "md-nav__link" >
Wide ResNet
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../xception/" class = "md-nav__link" >
Xception
< / a >
< / li >
< / ul >
< / nav >
< / li >
< li class = "md-nav__item" >
< a href = "../../results/" class = "md-nav__link" >
Results
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../../scripts/" class = "md-nav__link" >
Scripts
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../../training_hparam_examples/" class = "md-nav__link" >
Training Examples
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../../feature_extraction/" class = "md-nav__link" >
Feature Extraction
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../../changes/" class = "md-nav__link" >
Recent Changes
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "../../archived_changes/" class = "md-nav__link" >
Archived Changes
< / a >
< / li >
< / ul >
< / nav >
< / div >
< / div >
< / div >
< div class = "md-sidebar md-sidebar--secondary" data-md-component = "sidebar" data-md-type = "toc" >
< div class = "md-sidebar__scrollwrap" >
< div class = "md-sidebar__inner" >
< nav class = "md-nav md-nav--secondary" aria-label = "Table of contents" >
< label class = "md-nav__title" for = "__toc" >
< span class = "md-nav__icon md-icon" > < / span >
Table of contents
< / label >
< ul class = "md-nav__list" data-md-component = "toc" data-md-scrollfix >
< li class = "md-nav__item" >
< a href = "#how-do-i-use-this-model-on-an-image" class = "md-nav__link" >
How do I use this model on an image?
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#how-do-i-finetune-this-model" class = "md-nav__link" >
How do I finetune this model?
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#how-do-i-train-this-model" class = "md-nav__link" >
How do I train this model?
< / a >
< / li >
< li class = "md-nav__item" >
< a href = "#citation" class = "md-nav__link" >
Citation
< / a >
< / li >
< / ul >
< / nav >
< / div >
< / div >
< / div >
< div class = "md-content" data-md-component = "content" >
< article class = "md-content__inner md-typeset" >
< h1 id = "resnest" > ResNeSt< / h1 >
< p > A < strong > ResNeSt< / strong > is a variant on a < a href = "https://paperswithcode.com/method/resnet" > ResNet< / a > , which instead stacks < a href = "https://paperswithcode.com/method/split-attention" > Split-Attention blocks< / a > . The cardinal group representations are then concatenated along the channel dimension: < span class = "arithmatex" > < span class = "MathJax_Preview" > V = \text{Concat}< / span > < script type = "math/tex" > V = \ text { Concat } < / script > < / span > {< span class = "arithmatex" > < span class = "MathJax_Preview" > V^{1},V^{2},\cdots{V}^{K}< / span > < script type = "math/tex" > V ^ { 1 } , V ^ { 2 } , \ cdots { V } ^ { K } < / script > < / span > }. As in standard residual blocks, the final output < span class = "arithmatex" > < span class = "MathJax_Preview" > Y< / span > < script type = "math/tex" > Y < / script > < / span > of otheur Split-Attention block is produced using a shortcut connection: < span class = "arithmatex" > < span class = "MathJax_Preview" > Y=V+X< / span > < script type = "math/tex" > Y = V + X < / script > < / span > , if the input and output feature-map share the same shape. For blocks with a stride, an appropriate transformation < span class = "arithmatex" > < span class = "MathJax_Preview" > \mathcal{T}< / span > < script type = "math/tex" > \ mathcal { T } < / script > < / span > is applied to the shortcut connection to align the output shapes: < span class = "arithmatex" > < span class = "MathJax_Preview" > Y=V+\mathcal{T}(X)< / span > < script type = "math/tex" > Y = V + \ mathcal { T } ( X ) < / script > < / span > . For example, < span class = "arithmatex" > < span class = "MathJax_Preview" > \mathcal{T}< / span > < script type = "math/tex" > \ mathcal { T } < / script > < / span > can be strided convolution or combined convolution-with-pooling.< / p >
< h2 id = "how-do-i-use-this-model-on-an-image" > How do I use this model on an image?< / h2 >
< p > To load a pretrained model:< / p >
< div class = "highlight" > < pre > < span > < / span > < code > < span class = "kn" > import< / span > < span class = "nn" > timm< / span >
< span class = "n" > model< / span > < span class = "o" > =< / span > < span class = "n" > timm< / span > < span class = "o" > .< / span > < span class = "n" > create_model< / span > < span class = "p" > (< / span > < span class = "s1" > ' resnest101e' < / span > < span class = "p" > ,< / span > < span class = "n" > pretrained< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > )< / span >
< span class = "n" > model< / span > < span class = "o" > .< / span > < span class = "n" > eval< / span > < span class = "p" > ()< / span >
< / code > < / pre > < / div >
< p > To load and preprocess the image:
< div class = "highlight" > < pre > < span > < / span > < code > < span class = "kn" > import< / span > < span class = "nn" > urllib< / span >
< span class = "kn" > from< / span > < span class = "nn" > PIL< / span > < span class = "kn" > import< / span > < span class = "n" > Image< / span >
< span class = "kn" > from< / span > < span class = "nn" > timm.data< / span > < span class = "kn" > import< / span > < span class = "n" > resolve_data_config< / span >
< span class = "kn" > from< / span > < span class = "nn" > timm.data.transforms_factory< / span > < span class = "kn" > import< / span > < span class = "n" > create_transform< / span >
< span class = "n" > config< / span > < span class = "o" > =< / span > < span class = "n" > resolve_data_config< / span > < span class = "p" > ({},< / span > < span class = "n" > model< / span > < span class = "o" > =< / span > < span class = "n" > model< / span > < span class = "p" > )< / span >
< span class = "n" > transform< / span > < span class = "o" > =< / span > < span class = "n" > create_transform< / span > < span class = "p" > (< / span > < span class = "o" > **< / span > < span class = "n" > config< / span > < span class = "p" > )< / span >
< span class = "n" > url< / span > < span class = "p" > ,< / span > < span class = "n" > filename< / span > < span class = "o" > =< / span > < span class = "p" > (< / span > < span class = "s2" > " https://github.com/pytorch/hub/raw/master/images/dog.jpg" < / span > < span class = "p" > ,< / span > < span class = "s2" > " dog.jpg" < / span > < span class = "p" > )< / span >
< span class = "n" > urllib< / span > < span class = "o" > .< / span > < span class = "n" > request< / span > < span class = "o" > .< / span > < span class = "n" > urlretrieve< / span > < span class = "p" > (< / span > < span class = "n" > url< / span > < span class = "p" > ,< / span > < span class = "n" > filename< / span > < span class = "p" > )< / span >
< span class = "n" > img< / span > < span class = "o" > =< / span > < span class = "n" > Image< / span > < span class = "o" > .< / span > < span class = "n" > open< / span > < span class = "p" > (< / span > < span class = "n" > filename< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "n" > convert< / span > < span class = "p" > (< / span > < span class = "s1" > ' RGB' < / span > < span class = "p" > )< / span >
< span class = "n" > tensor< / span > < span class = "o" > =< / span > < span class = "n" > transform< / span > < span class = "p" > (< / span > < span class = "n" > img< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "n" > unsqueeze< / span > < span class = "p" > (< / span > < span class = "mi" > 0< / span > < span class = "p" > )< / span > < span class = "c1" > # transform and add batch dimension< / span >
< / code > < / pre > < / div > < / p >
< p > To get the model predictions:
< div class = "highlight" > < pre > < span > < / span > < code > < span class = "kn" > import< / span > < span class = "nn" > torch< / span >
< span class = "k" > with< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > no_grad< / span > < span class = "p" > ():< / span >
< span class = "n" > out< / span > < span class = "o" > =< / span > < span class = "n" > model< / span > < span class = "p" > (< / span > < span class = "n" > tensor< / span > < span class = "p" > )< / span >
< span class = "n" > probabilities< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > functional< / span > < span class = "o" > .< / span > < span class = "n" > softmax< / span > < span class = "p" > (< / span > < span class = "n" > out< / span > < span class = "p" > [< / span > < span class = "mi" > 0< / span > < span class = "p" > ],< / span > < span class = "n" > dim< / span > < span class = "o" > =< / span > < span class = "mi" > 0< / span > < span class = "p" > )< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "n" > probabilities< / span > < span class = "o" > .< / span > < span class = "n" > shape< / span > < span class = "p" > )< / span >
< span class = "c1" > # prints: torch.Size([1000])< / span >
< / code > < / pre > < / div > < / p >
< p > To get the top-5 predictions class names:
< div class = "highlight" > < pre > < span > < / span > < code > < span class = "c1" > # Get imagenet class mappings< / span >
< span class = "n" > url< / span > < span class = "p" > ,< / span > < span class = "n" > filename< / span > < span class = "o" > =< / span > < span class = "p" > (< / span > < span class = "s2" > " https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt" < / span > < span class = "p" > ,< / span > < span class = "s2" > " imagenet_classes.txt" < / span > < span class = "p" > )< / span >
< span class = "n" > urllib< / span > < span class = "o" > .< / span > < span class = "n" > request< / span > < span class = "o" > .< / span > < span class = "n" > urlretrieve< / span > < span class = "p" > (< / span > < span class = "n" > url< / span > < span class = "p" > ,< / span > < span class = "n" > filename< / span > < span class = "p" > )< / span >
< span class = "k" > with< / span > < span class = "nb" > open< / span > < span class = "p" > (< / span > < span class = "s2" > " imagenet_classes.txt" < / span > < span class = "p" > ,< / span > < span class = "s2" > " r" < / span > < span class = "p" > )< / span > < span class = "k" > as< / span > < span class = "n" > f< / span > < span class = "p" > :< / span >
< span class = "n" > categories< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "n" > s< / span > < span class = "o" > .< / span > < span class = "n" > strip< / span > < span class = "p" > ()< / span > < span class = "k" > for< / span > < span class = "n" > s< / span > < span class = "ow" > in< / span > < span class = "n" > f< / span > < span class = "o" > .< / span > < span class = "n" > readlines< / span > < span class = "p" > ()]< / span >
< span class = "c1" > # Print top categories per image< / span >
< span class = "n" > top5_prob< / span > < span class = "p" > ,< / span > < span class = "n" > top5_catid< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > topk< / span > < span class = "p" > (< / span > < span class = "n" > probabilities< / span > < span class = "p" > ,< / span > < span class = "mi" > 5< / span > < span class = "p" > )< / span >
< span class = "k" > for< / span > < span class = "n" > i< / span > < span class = "ow" > in< / span > < span class = "nb" > range< / span > < span class = "p" > (< / span > < span class = "n" > top5_prob< / span > < span class = "o" > .< / span > < span class = "n" > size< / span > < span class = "p" > (< / span > < span class = "mi" > 0< / span > < span class = "p" > )):< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "n" > categories< / span > < span class = "p" > [< / span > < span class = "n" > top5_catid< / span > < span class = "p" > [< / span > < span class = "n" > i< / span > < span class = "p" > ]],< / span > < span class = "n" > top5_prob< / span > < span class = "p" > [< / span > < span class = "n" > i< / span > < span class = "p" > ]< / span > < span class = "o" > .< / span > < span class = "n" > item< / span > < span class = "p" > ())< / span >
< span class = "c1" > # prints class names and probabilities like:< / span >
< span class = "c1" > # [(' Samoyed' , 0.6425196528434753), (' Pomeranian' , 0.04062102362513542), (' keeshond' , 0.03186424449086189), (' white wolf' , 0.01739676296710968), (' Eskimo dog' , 0.011717947199940681)]< / span >
< / code > < / pre > < / div > < / p >
< p > Replace the model name with the variant you want to use, e.g. < code > resnest101e< / code > . You can find the IDs in the model summaries at the top of this page.< / p >
< p > To extract image features with this model, follow the < a href = "https://rwightman.github.io/pytorch-image-models/feature_extraction/" > timm feature extraction examples< / a > , just change the name of the model you want to use.< / p >
< h2 id = "how-do-i-finetune-this-model" > How do I finetune this model?< / h2 >
< p > You can finetune any of the pre-trained models just by changing the classifier (the last layer).
< div class = "highlight" > < pre > < span > < / span > < code > < span class = "n" > model< / span > < span class = "o" > =< / span > < span class = "n" > timm< / span > < span class = "o" > .< / span > < span class = "n" > create_model< / span > < span class = "p" > (< / span > < span class = "s1" > ' resnest101e' < / span > < span class = "p" > ,< / span > < span class = "n" > pretrained< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > ,< / span > < span class = "n" > num_classes< / span > < span class = "o" > =< / span > < span class = "n" > NUM_FINETUNE_CLASSES< / span > < span class = "p" > )< / span >
< / code > < / pre > < / div >
To finetune on your own dataset, you have to write a training loop or adapt < a href = "https://github.com/rwightman/pytorch-image-models/blob/master/train.py" > timm's training
script< / a > to use your dataset.< / p >
< h2 id = "how-do-i-train-this-model" > How do I train this model?< / h2 >
< p > You can follow the < a href = "https://rwightman.github.io/pytorch-image-models/scripts/" > timm recipe scripts< / a > for training a new model afresh.< / p >
< h2 id = "citation" > Citation< / h2 >
< div class = "highlight" > < pre > < span > < / span > < code > < span class = "nc" > @misc< / span > < span class = "p" > {< / span > < span class = "nl" > zhang2020resnest< / span > < span class = "p" > ,< / span >
< span class = "w" > < / span > < span class = "na" > title< / span > < span class = "p" > =< / span > < span class = "s" > {ResNeSt: Split-Attention Networks}< / span > < span class = "p" > ,< / span > < span class = "w" > < / span >
< span class = "w" > < / span > < span class = "na" > author< / span > < span class = "p" > =< / span > < span class = "s" > {Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola}< / span > < span class = "p" > ,< / span >
< span class = "w" > < / span > < span class = "na" > year< / span > < span class = "p" > =< / span > < span class = "s" > {2020}< / span > < span class = "p" > ,< / span >
< span class = "w" > < / span > < span class = "na" > eprint< / span > < span class = "p" > =< / span > < span class = "s" > {2004.08955}< / span > < span class = "p" > ,< / span >
< span class = "w" > < / span > < span class = "na" > archivePrefix< / span > < span class = "p" > =< / span > < span class = "s" > {arXiv}< / span > < span class = "p" > ,< / span >
< span class = "w" > < / span > < span class = "na" > primaryClass< / span > < span class = "p" > =< / span > < span class = "s" > {cs.CV}< / span >
< span class = "p" > }< / span >
< / code > < / pre > < / div >
<!--
Type: model-index
Collections:
- Name: ResNeSt
Paper:
Title: 'ResNeSt: Split-Attention Networks'
URL: https://paperswithcode.com/paper/resnest-split-attention-networks
Models:
- Name: resnest101e
In Collection: ResNeSt
Metadata:
FLOPs: 17423183648
Parameters: 48280000
File Size: 193782911
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
Tasks:
- Image Classification
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 64x NVIDIA V100 GPUs
ID: resnest101e
LR: 0.1
Epochs: 270
Layers: 101
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 4096
Image Size: '256'
Weight Decay: 0.0001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L182
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 82.88%
Top 5 Accuracy: 96.31%
- Name: resnest14d
In Collection: ResNeSt
Metadata:
FLOPs: 3548594464
Parameters: 10610000
File Size: 42562639
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
Tasks:
- Image Classification
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 64x NVIDIA V100 GPUs
ID: resnest14d
LR: 0.1
Epochs: 270
Layers: 14
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 8192
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L148
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 75.51%
Top 5 Accuracy: 92.52%
- Name: resnest200e
In Collection: ResNeSt
Metadata:
FLOPs: 45954387872
Parameters: 70200000
File Size: 193782911
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
Tasks:
- Image Classification
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 64x NVIDIA V100 GPUs
ID: resnest200e
LR: 0.1
Epochs: 270
Layers: 200
Dropout: 0.2
Crop Pct: '0.909'
Momentum: 0.9
Batch Size: 2048
Image Size: '320'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L194
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 83.85%
Top 5 Accuracy: 96.89%
- Name: resnest269e
In Collection: ResNeSt
Metadata:
FLOPs: 100830307104
Parameters: 110930000
File Size: 445402691
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
Tasks:
- Image Classification
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 64x NVIDIA V100 GPUs
ID: resnest269e
LR: 0.1
Epochs: 270
Layers: 269
Dropout: 0.2
Crop Pct: '0.928'
Momentum: 0.9
Batch Size: 2048
Image Size: '416'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L206
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 84.53%
Top 5 Accuracy: 96.99%
- Name: resnest26d
In Collection: ResNeSt
Metadata:
FLOPs: 4678918720
Parameters: 17070000
File Size: 68470242
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
Tasks:
- Image Classification
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 64x NVIDIA V100 GPUs
ID: resnest26d
LR: 0.1
Epochs: 270
Layers: 26
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 8192
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L159
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.48%
Top 5 Accuracy: 94.3%
- Name: resnest50d
In Collection: ResNeSt
Metadata:
FLOPs: 6937106336
Parameters: 27480000
File Size: 110273258
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
Tasks:
- Image Classification
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 64x NVIDIA V100 GPUs
ID: resnest50d
LR: 0.1
Epochs: 270
Layers: 50
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 8192
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L170
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.96%
Top 5 Accuracy: 95.38%
- Name: resnest50d_1s4x24d
In Collection: ResNeSt
Metadata:
FLOPs: 5686764544
Parameters: 25680000
File Size: 103045531
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
Tasks:
- Image Classification
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 64x NVIDIA V100 GPUs
ID: resnest50d_1s4x24d
LR: 0.1
Epochs: 270
Layers: 50
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 8192
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L229
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 81.0%
Top 5 Accuracy: 95.33%
- Name: resnest50d_4s2x40d
In Collection: ResNeSt
Metadata:
FLOPs: 5657064720
Parameters: 30420000
File Size: 122133282
Architecture:
- 1x1 Convolution
- Convolution
- Dense Connections
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Split Attention
Tasks:
- Image Classification
Training Techniques:
- AutoAugment
- DropBlock
- Label Smoothing
- Mixup
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 64x NVIDIA V100 GPUs
ID: resnest50d_4s2x40d
LR: 0.1
Epochs: 270
Layers: 50
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 8192
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L218
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 81.11%
Top 5 Accuracy: 95.55%
-->
< / article >
< / div >
< / div >
< / main >
< footer class = "md-footer" >
< div class = "md-footer-meta md-typeset" >
< div class = "md-footer-meta__inner md-grid" >
< div class = "md-copyright" >
Made with
< a href = "https://squidfunk.github.io/mkdocs-material/" target = "_blank" rel = "noopener" >
Material for MkDocs
< / a >
< / div >
< / div >
< / div >
< / footer >
< / div >
< div class = "md-dialog" data-md-component = "dialog" >
< div class = "md-dialog__inner md-typeset" > < / div >
< / div >
< script id = "__config" type = "application/json" > { "base" : "../.." , "features" : [ ] , "search" : "../../assets/javascripts/workers/search.12658920.min.js" , "translations" : { "clipboard.copied" : "Copied to clipboard" , "clipboard.copy" : "Copy to clipboard" , "search.result.more.one" : "1 more on this page" , "search.result.more.other" : "# more on this page" , "search.result.none" : "No matching documents" , "search.result.one" : "1 matching document" , "search.result.other" : "# matching documents" , "search.result.placeholder" : "Type to start searching" , "search.result.term.missing" : "Missing" , "select.version" : "Select version" } } < / script >
< script src = "../../assets/javascripts/bundle.5cf534bf.min.js" > < / script >
< script src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-MML-AM_CHTML" > < / script >
< script src = "https://cdnjs.cloudflare.com/ajax/libs/tablesort/5.2.1/tablesort.min.js" > < / script >
< script src = "../../javascripts/tables.js" > < / script >
< / body >
< / html >