# ESE-VoVNet
**VoVNet** is a convolutional neural network that seeks to make [DenseNet ](https://paperswithcode.com/method/densenet ) more efficient by concatenating all features only once in the last feature map, which makes input size constant and enables enlarging new output channel.
Read about [one-shot aggregation here ](https://paperswithcode.com/method/one-shot-aggregation ).
## How do I use this model on an image?
To load a pretrained model:
```python
import timm
model = timm.create_model('ese_vovnet19b_dw', pretrained=True)
model.eval()
```
To load and preprocess the image:
```python
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
config = resolve_data_config({}, model=model)
transform = create_transform(**config)
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```python
import torch
with torch.no_grad():
out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename)
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
Replace the model name with the variant you want to use, e.g. `ese_vovnet19b_dw` . You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the [timm feature extraction examples ](https://rwightman.github.io/pytorch-image-models/feature_extraction/ ), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('ese_vovnet19b_dw', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts ](https://rwightman.github.io/pytorch-image-models/scripts/ ) for training a new model afresh.
## Citation
```BibTeX
@misc {lee2019energy,
title={An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection},
author={Youngwan Lee and Joong-won Hwang and Sangrok Lee and Yuseok Bae and Jongyoul Park},
year={2019},
eprint={1904.09730},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Type: model-index
Collections:
- Name: ESE VovNet
Paper:
Title: 'CenterMask : Real-Time Anchor-Free Instance Segmentation'
URL: https://paperswithcode.com/paper/centermask-real-time-anchor-free-instance-1
Models:
- Name: ese_vovnet19b_dw
In Collection: ESE VovNet
Metadata:
FLOPs: 1711959904
Parameters: 6540000
File Size: 26243175
Architecture:
- Batch Normalization
- Convolution
- Max Pooling
- One-Shot Aggregation
- ReLU
Tasks:
- Image Classification
Training Data:
- ImageNet
ID: ese_vovnet19b_dw
Layers: 19
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/vovnet.py#L361
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ese_vovnet19b_dw-a8741004.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 76.82%
Top 5 Accuracy: 93.28%
- Name: ese_vovnet39b
In Collection: ESE VovNet
Metadata:
FLOPs: 9089259008
Parameters: 24570000
File Size: 98397138
Architecture:
- Batch Normalization
- Convolution
- Max Pooling
- One-Shot Aggregation
- ReLU
Tasks:
- Image Classification
Training Data:
- ImageNet
ID: ese_vovnet39b
Layers: 39
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/vovnet.py#L371
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ese_vovnet39b-f912fe73.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.31%
Top 5 Accuracy: 94.72%
-->