You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
69 lines
2.3 KiB
69 lines
2.3 KiB
6 years ago
|
import torch
|
||
|
|
||
|
from .scheduler import Scheduler
|
||
|
|
||
|
|
||
|
class PlateauLRScheduler(Scheduler):
|
||
|
"""Decay the LR by a factor every time the validation loss plateaus."""
|
||
|
|
||
|
def __init__(self,
|
||
|
optimizer,
|
||
|
factor=0.1,
|
||
|
patience=10,
|
||
|
verbose=False,
|
||
|
threshold=1e-4,
|
||
|
cooldown_epochs=0,
|
||
|
warmup_updates=0,
|
||
|
warmup_lr_init=0,
|
||
|
lr_min=0,
|
||
|
):
|
||
|
super().__init__(optimizer, 'lr', initialize=False)
|
||
|
|
||
|
self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
||
|
self.optimizer.optimizer,
|
||
|
patience=patience,
|
||
|
factor=factor,
|
||
|
verbose=verbose,
|
||
|
threshold=threshold,
|
||
|
cooldown=cooldown_epochs,
|
||
|
min_lr=lr_min
|
||
|
)
|
||
|
|
||
|
self.warmup_updates = warmup_updates
|
||
|
self.warmup_lr_init = warmup_lr_init
|
||
|
|
||
|
if self.warmup_updates:
|
||
|
self.warmup_active = warmup_updates > 0 # this state updates with num_updates
|
||
|
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_updates for v in self.base_values]
|
||
|
super().update_groups(self.warmup_lr_init)
|
||
|
else:
|
||
|
self.warmup_steps = [1 for _ in self.base_values]
|
||
|
|
||
|
def state_dict(self):
|
||
|
return {
|
||
|
'best': self.lr_scheduler.best,
|
||
|
'last_epoch': self.lr_scheduler.last_epoch,
|
||
|
}
|
||
|
|
||
|
def load_state_dict(self, state_dict):
|
||
|
self.lr_scheduler.best = state_dict['best']
|
||
|
if 'last_epoch' in state_dict:
|
||
|
self.lr_scheduler.last_epoch = state_dict['last_epoch']
|
||
|
|
||
|
# override the base class step fn completely
|
||
|
def step(self, epoch, val_loss=None):
|
||
|
"""Update the learning rate at the end of the given epoch."""
|
||
|
if val_loss is not None and not self.warmup_active:
|
||
|
self.lr_scheduler.step(val_loss, epoch)
|
||
|
else:
|
||
|
self.lr_scheduler.last_epoch = epoch
|
||
|
|
||
|
def get_update_values(self, num_updates: int):
|
||
|
if num_updates < self.warmup_updates:
|
||
|
lrs = [self.warmup_lr_init + num_updates * s for s in self.warmup_steps]
|
||
|
else:
|
||
|
self.warmup_active = False # warmup cancelled by first update past warmup_update count
|
||
|
lrs = None # no change on update after warmup stage
|
||
|
return lrs
|
||
|
|